--- license: apache-2.0 language: en tags: - deberta-v3-base - deberta-v3 - deberta - text-classification - nli - natural-language-inference - multitask - multi-task - pipeline - extreme-multi-task - extreme-mtl - tasksource - zero-shot - rlhf model-index: - name: deberta-v3-base-tasksource-nli results: - task: type: text-classification name: Text Classification dataset: name: glue type: glue config: rte split: validation metrics: - type: accuracy value: 0.89 - task: type: natural-language-inference name: Natural Language Inference dataset: name: anli type: anli config: plain_text split: validation_r3 metrics: - type: accuracy value: 0.52 name: Accuracy datasets: - glue - super_glue - anli - tasksource/babi_nli - sick - snli - scitail - OpenAssistant/oasst1 - universal_dependencies - hans - qbao775/PARARULE-Plus - alisawuffles/WANLI - metaeval/recast - sileod/probability_words_nli - joey234/nan-nli - pietrolesci/nli_fever - pietrolesci/breaking_nli - pietrolesci/conj_nli - pietrolesci/fracas - pietrolesci/dialogue_nli - pietrolesci/mpe - pietrolesci/dnc - pietrolesci/gpt3_nli - pietrolesci/recast_white - pietrolesci/joci - martn-nguyen/contrast_nli - pietrolesci/robust_nli - pietrolesci/robust_nli_is_sd - pietrolesci/robust_nli_li_ts - pietrolesci/gen_debiased_nli - pietrolesci/add_one_rte - metaeval/imppres - pietrolesci/glue_diagnostics - hlgd - PolyAI/banking77 - paws - quora - medical_questions_pairs - conll2003 - nlpaueb/finer-139 - Anthropic/hh-rlhf - Anthropic/model-written-evals - truthful_qa - nightingal3/fig-qa - tasksource/bigbench - blimp - cos_e - cosmos_qa - dream - openbookqa - qasc - quartz - quail - head_qa - sciq - social_i_qa - wiki_hop - wiqa - piqa - hellaswag - pkavumba/balanced-copa - 12ml/e-CARE - art - tasksource/mmlu - winogrande - codah - ai2_arc - definite_pronoun_resolution - swag - math_qa - metaeval/utilitarianism - mteb/amazon_counterfactual - SetFit/insincere-questions - SetFit/toxic_conversations - turingbench/TuringBench - trec - tals/vitaminc - hope_edi - strombergnlp/rumoureval_2019 - ethos - tweet_eval - discovery - pragmeval - silicone - lex_glue - papluca/language-identification - imdb - rotten_tomatoes - ag_news - yelp_review_full - financial_phrasebank - poem_sentiment - dbpedia_14 - amazon_polarity - app_reviews - hate_speech18 - sms_spam - humicroedit - snips_built_in_intents - banking77 - hate_speech_offensive - yahoo_answers_topics - pacovaldez/stackoverflow-questions - zapsdcn/hyperpartisan_news - zapsdcn/sciie - zapsdcn/citation_intent - go_emotions - scicite - liar - relbert/lexical_relation_classification - metaeval/linguisticprobing - tasksource/crowdflower - metaeval/ethics - emo - google_wellformed_query - tweets_hate_speech_detection - has_part - wnut_17 - ncbi_disease - acronym_identification - jnlpba - species_800 - SpeedOfMagic/ontonotes_english - blog_authorship_corpus - launch/open_question_type - health_fact - commonsense_qa - mc_taco - ade_corpus_v2 - prajjwal1/discosense - circa - YaHi/EffectiveFeedbackStudentWriting - Ericwang/promptSentiment - Ericwang/promptNLI - Ericwang/promptSpoke - Ericwang/promptProficiency - Ericwang/promptGrammar - Ericwang/promptCoherence - PiC/phrase_similarity - copenlu/scientific-exaggeration-detection - quarel - mwong/fever-evidence-related - numer_sense - dynabench/dynasent - raquiba/Sarcasm_News_Headline - sem_eval_2010_task_8 - demo-org/auditor_review - medmcqa - aqua_rat - RuyuanWan/Dynasent_Disagreement - RuyuanWan/Politeness_Disagreement - RuyuanWan/SBIC_Disagreement - RuyuanWan/SChem_Disagreement - RuyuanWan/Dilemmas_Disagreement - lucasmccabe/logiqa - wiki_qa - metaeval/cycic_classification - metaeval/cycic_multiplechoice - metaeval/sts-companion - metaeval/commonsense_qa_2.0 - metaeval/lingnli - metaeval/monotonicity-entailment - metaeval/arct - metaeval/scinli - metaeval/naturallogic - onestop_qa - demelin/moral_stories - corypaik/prost - aps/dynahate - metaeval/syntactic-augmentation-nli - metaeval/autotnli - lasha-nlp/CONDAQA - openai/webgpt_comparisons - Dahoas/synthetic-instruct-gptj-pairwise - metaeval/scruples - metaeval/wouldyourather - sileod/attempto-nli - metaeval/defeasible-nli - metaeval/help-nli - metaeval/nli-veridicality-transitivity - metaeval/natural-language-satisfiability - metaeval/lonli - metaeval/dadc-limit-nli - ColumbiaNLP/FLUTE - metaeval/strategy-qa - openai/summarize_from_feedback - metaeval/folio - metaeval/tomi-nli - metaeval/avicenna - stanfordnlp/SHP - GBaker/MedQA-USMLE-4-options-hf - sileod/wikimedqa - declare-lab/cicero - amydeng2000/CREAK - metaeval/mutual - inverse-scaling/NeQA - inverse-scaling/quote-repetition - inverse-scaling/redefine-math - metaeval/puzzte - metaeval/implicatures - race - metaeval/spartqa-yn - metaeval/spartqa-mchoice - metaeval/temporal-nli - metaeval/ScienceQA_text_only - AndyChiang/cloth - metaeval/logiqa-2.0-nli - tasksource/oasst1_dense_flat - metaeval/boolq-natural-perturbations - metaeval/path-naturalness-prediction - riddle_sense - Jiangjie/ekar_english - metaeval/implicit-hate-stg1 - metaeval/chaos-mnli-ambiguity - IlyaGusev/headline_cause - metaeval/race-c - metaeval/equate - metaeval/ambient - AndyChiang/dgen - metaeval/clcd-english - civil_comments - metaeval/acceptability-prediction - maximedb/twentyquestions - metaeval/counterfactually-augmented-snli - tasksource/I2D2 - sileod/mindgames - metaeval/counterfactually-augmented-imdb - metaeval/cnli - metaeval/reclor - tasksource/oasst1_pairwise_rlhf_reward - tasksource/zero-shot-label-nli metrics: - accuracy library_name: transformers pipeline_tag: zero-shot-classification --- # Model Card for DeBERTa-v3-base-tasksource-nli This is [DeBERTa-v3-base](https://hf.co/microsoft/deberta-v3-base) fine-tuned with multi-task learning on 560 tasks of the [tasksource collection](https://github.com/sileod/tasksource/). This checkpoint has strong zero-shot validation performance on many tasks (e.g. 70% on WNLI), and can be used for: - Zero-shot entailment-based classification pipeline (similar to bart-mnli), see [ZS]. - Natural language inference, and many other tasks with tasksource-adapters, see [TA] - Further fine-tuning with a new task (classification, token classification or multiple-choice). # [ZS] Zero-shot classification pipeline ```python from transformers import pipeline classifier = pipeline("zero-shot-classification",model="sileod/deberta-v3-base-tasksource-nli") text = "one day I will see the world" candidate_labels = ['travel', 'cooking', 'dancing'] classifier(text, candidate_labels) ``` NLI training data of this model includes [label-nli](https://huggingface.co/datasets/tasksource/zero-shot-label-nli), a NLI dataset specially constructed to improve this kind of zero-shot classification. # [TA] Tasksource-adapters: 1 line access to hundreds of tasks ```python !pip install tasknet tasksource import tasknet as tn pipe = tn.load_pipeline('sileod/deberta-v3-base-tasksource-nli','glue/sst2') # works for 500+ tasksource tasks pipe(['That movie was great !', 'Awful movie.']) # [{'label': 'positive', 'score': 0.9956}, {'label': 'negative', 'score': 0.9967}] ``` The list of tasks is available in model config.json. This is more efficient than ZS since it requires only one forward pass per example, but it is less flexible. ## Evaluation This model ranked 1st among all models with the microsoft/deberta-v3-base architecture according to the IBM model recycling evaluation. https://ibm.github.io/model-recycling/ ### Software and training details https://github.com/sileod/tasksource/ \ https://github.com/sileod/tasknet/ \ Training code: https://colab.research.google.com/drive/1iB4Oxl9_B5W3ZDzXoWJN-olUbqLBxgQS?usp=sharing This is the shared model with the MNLI classifier on top. Each task had a specific CLS embedding, which is dropped 10% of the time to facilitate model use without it. All multiple-choice model used the same classification layers. For classification tasks, models shared weights if their labels matched. The number of examples per task was capped to 64k. The model was trained for 100k steps with a batch size of 384, and a peak learning rate of 2e-5. Training took 7 days on RTX6000 24GB gpu. # Citation More details on this [article:](https://arxiv.org/abs/2301.05948) ``` @article{sileo2023tasksource, title={tasksource: Structured Dataset Preprocessing Annotations for Frictionless Extreme Multi-Task Learning and Evaluation}, author={Sileo, Damien}, url= {https://arxiv.org/abs/2301.05948}, journal={arXiv preprint arXiv:2301.05948}, year={2023} } ``` # Model Card Contact damien.sileo@inria.fr