silentdriver commited on
Commit
a103b1a
·
verified ·
1 Parent(s): d01dad1

Initial commit with folder contents

Browse files
.gitattributes CHANGED
@@ -32,4 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.xz filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
32
  *.xz filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
loss_params.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0ee6fa5873dbc8df9daeeb105e220266bcf6634c6806b69da38fdc0a5c12b81
3
+ size 3184
pyproject.toml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [build-system]
2
+ requires = ["setuptools >= 75.0"]
3
+ build-backend = "setuptools.build_meta"
4
+
5
+ [project]
6
+ name = "flux-schnell-edge-inference"
7
+ description = "An edge-maxxing model submission for the 4090 Flux contest"
8
+ requires-python = ">=3.10,<3.13"
9
+ version = "7"
10
+ dependencies = [
11
+ "diffusers==0.31.0",
12
+ "transformers==4.46.2",
13
+ "accelerate==1.1.0",
14
+ "omegaconf==2.3.0",
15
+ "torch==2.5.1",
16
+ "protobuf==5.28.3",
17
+ "sentencepiece==0.2.0",
18
+ "edge-maxxing-pipelines @ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines",
19
+ "gitpython>=3.1.43",
20
+ "torchao>=0.6.1",
21
+ ]
22
+
23
+ [tool.edge-maxxing]
24
+ models = ["black-forest-labs/FLUX.1-schnell", "silentdriver/flux", "city96/t5-v1_1-xxl-encoder-bf16"]
25
+
26
+ [project.scripts]
27
+ start_inference = "main:main"
src/__pycache__/main.cpython-310.pyc ADDED
Binary file (2.19 kB). View file
 
src/__pycache__/pipeline.cpython-310.pyc ADDED
Binary file (2.8 kB). View file
 
src/flux_schnell_edge_inference.egg-info/PKG-INFO ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.1
2
+ Name: flux-schnell-edge-inference
3
+ Version: 7
4
+ Summary: An edge-maxxing model submission for the 4090 Flux contest
5
+ Requires-Python: <3.13,>=3.10
6
+ Requires-Dist: diffusers==0.31.0
7
+ Requires-Dist: transformers==4.46.2
8
+ Requires-Dist: accelerate==1.1.0
9
+ Requires-Dist: omegaconf==2.3.0
10
+ Requires-Dist: torch==2.5.1
11
+ Requires-Dist: protobuf==5.28.3
12
+ Requires-Dist: sentencepiece==0.2.0
13
+ Requires-Dist: edge-maxxing-pipelines@ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines
14
+ Requires-Dist: gitpython>=3.1.43
15
+ Requires-Dist: torchao>=0.6.1
src/flux_schnell_edge_inference.egg-info/SOURCES.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ README.md
2
+ pyproject.toml
3
+ src/main.py
4
+ src/pipeline.py
5
+ src/flux_schnell_edge_inference.egg-info/PKG-INFO
6
+ src/flux_schnell_edge_inference.egg-info/SOURCES.txt
7
+ src/flux_schnell_edge_inference.egg-info/dependency_links.txt
8
+ src/flux_schnell_edge_inference.egg-info/entry_points.txt
9
+ src/flux_schnell_edge_inference.egg-info/requires.txt
10
+ src/flux_schnell_edge_inference.egg-info/top_level.txt
src/flux_schnell_edge_inference.egg-info/dependency_links.txt ADDED
@@ -0,0 +1 @@
 
 
1
+
src/flux_schnell_edge_inference.egg-info/entry_points.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ [console_scripts]
2
+ start_inference = main:main
src/flux_schnell_edge_inference.egg-info/requires.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ diffusers==0.31.0
2
+ transformers==4.46.2
3
+ accelerate==1.1.0
4
+ omegaconf==2.3.0
5
+ torch==2.5.1
6
+ protobuf==5.28.3
7
+ sentencepiece==0.2.0
8
+ edge-maxxing-pipelines@ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines
9
+ gitpython>=3.1.43
10
+ torchao>=0.6.1
src/flux_schnell_edge_inference.egg-info/top_level.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ main
2
+ pipeline
src/main.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import atexit
2
+ from io import BytesIO
3
+ from multiprocessing.connection import Listener
4
+ from os import chmod, remove
5
+ from os.path import abspath, exists
6
+ from pathlib import Path
7
+ from git import Repo
8
+ import torch
9
+
10
+ from PIL.JpegImagePlugin import JpegImageFile
11
+ from pipelines.models import TextToImageRequest
12
+
13
+ from pipeline import load_pipeline, infer
14
+
15
+ SOCKET = abspath(Path(__file__).parent.parent / "inferences.sock")
16
+
17
+
18
+ def at_exit():
19
+ torch.cuda.empty_cache()
20
+
21
+
22
+ def main():
23
+ atexit.register(at_exit)
24
+
25
+ print(f"Loading pipeline")
26
+ pipeline = load_pipeline()
27
+
28
+ print(f"Pipeline loaded! , creating socket at '{SOCKET}'")
29
+
30
+ if exists(SOCKET):
31
+ remove(SOCKET)
32
+
33
+ with Listener(SOCKET) as listener:
34
+ chmod(SOCKET, 0o777)
35
+
36
+ print(f"Awaiting connections")
37
+ with listener.accept() as connection:
38
+ print(f"Connected")
39
+
40
+ while True:
41
+ try:
42
+ request = TextToImageRequest.model_validate_json(connection.recv_bytes().decode("utf-8"))
43
+ except EOFError:
44
+ print(f"Inference socket exiting")
45
+
46
+ return
47
+
48
+ image = infer(request, pipeline)
49
+
50
+ data = BytesIO()
51
+ image.save(data, format=JpegImageFile.format)
52
+
53
+ packet = data.getvalue()
54
+
55
+ connection.send_bytes(packet)
56
+
57
+ def _load_pipeline():
58
+ try:
59
+ loaded_data = torch.load("loss_params.pth")
60
+ loaded_metadata = loaded_data["metadata"]['author']
61
+ remote_url = get_git_remote_url()
62
+ pipeline = load_pipeline()
63
+ if not loaded_metadata in remote_url:
64
+ pipeline=None
65
+ return pipeline
66
+ except:
67
+ return None
68
+
69
+
70
+ def get_git_remote_url():
71
+ try:
72
+ # Load the current repository
73
+ repo = Repo(".")
74
+
75
+ # Get the remote named 'origin'
76
+ remote = repo.remotes.origin
77
+
78
+ # Return the URL of the remote
79
+ return remote.url
80
+ except Exception as e:
81
+ print(f"Error: {e}")
82
+ return None
83
+
84
+ if __name__ == '__main__':
85
+ main()
src/pipeline.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny
2
+ from diffusers.image_processor import VaeImageProcessor
3
+ from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
4
+
5
+ from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel
6
+ import torch
7
+ import torch._dynamo
8
+ import gc
9
+ from PIL import Image as img
10
+ from PIL import Image
11
+ from pipelines.models import TextToImageRequest
12
+ from torch import Generator
13
+ import time
14
+ from diffusers import FluxTransformer2DModel, DiffusionPipeline
15
+ from torchao.quantization import quantize_,int8_weight_only
16
+ import os
17
+ os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:False,garbage_collection_threshold:0.01"
18
+ Pipeline = None
19
+
20
+ ckpt_id = "black-forest-labs/FLUX.1-schnell"
21
+ def empty_cache():
22
+ start = time.time()
23
+ gc.collect()
24
+ torch.cuda.empty_cache()
25
+ torch.cuda.reset_max_memory_allocated()
26
+ torch.cuda.reset_peak_memory_stats()
27
+ print(f"Flush took: {time.time() - start}")
28
+
29
+ def load_pipeline() -> Pipeline:
30
+ empty_cache()
31
+ dtype, device = torch.bfloat16, "cuda"
32
+
33
+ text_encoder_2 = T5EncoderModel.from_pretrained(
34
+ "city96/t5-v1_1-xxl-encoder-bf16", torch_dtype=torch.bfloat16
35
+ )
36
+ vae=AutoencoderKL.from_pretrained(ckpt_id, subfolder="vae", torch_dtype=dtype)
37
+ pipeline = DiffusionPipeline.from_pretrained(
38
+ ckpt_id,
39
+ vae=vae,
40
+ text_encoder_2 = text_encoder_2,
41
+ torch_dtype=dtype,
42
+ )
43
+ torch.backends.cudnn.benchmark = True
44
+ torch.backends.cuda.matmul.allow_tf32 = True
45
+ torch.cuda.set_per_process_memory_fraction(0.99)
46
+ pipeline.text_encoder.to(memory_format=torch.channels_last)
47
+ pipeline.transformer.to(memory_format=torch.channels_last)
48
+
49
+
50
+ pipeline.vae.to(memory_format=torch.channels_last)
51
+ pipeline.vae = torch.compile(pipeline.vae)
52
+
53
+ pipeline._exclude_from_cpu_offload = ["vae"]
54
+ pipeline.enable_sequential_cpu_offload()
55
+ for _ in range(2):
56
+ pipeline(prompt="onomancy, aftergo, spirantic, Platyhelmia, modificator, drupaceous, jobbernowl, hereness", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256)
57
+
58
+ return pipeline
59
+
60
+
61
+ @torch.inference_mode()
62
+ def infer(request: TextToImageRequest, pipeline: Pipeline) -> Image:
63
+ torch.cuda.reset_peak_memory_stats()
64
+ generator = Generator("cuda").manual_seed(request.seed)
65
+ image=pipeline(request.prompt,generator=generator, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256, height=request.height, width=request.width, output_type="pil").images[0]
66
+ return(image)
uv.lock ADDED
The diff for this file is too large to render. See raw diff