--- license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - generated_from_trainer model-index: - name: zephyr-7b-sft-lora-accum4-lr5e_6 results: [] --- # zephyr-7b-sft-lora-accum4-lr5e_6 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 50.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0685 | 0.55 | 13 | 2.0233 | | 1.9972 | 1.57 | 27 | 1.9438 | | 1.9109 | 2.55 | 40 | 1.8720 | | 1.8583 | 3.57 | 54 | 1.8096 | | 1.7903 | 4.55 | 67 | 1.7596 | | 1.7454 | 5.57 | 81 | 1.7169 | | 1.7146 | 6.55 | 94 | 1.6789 | | 1.6737 | 7.57 | 108 | 1.6395 | | 1.6289 | 8.55 | 121 | 1.6056 | | 1.5934 | 9.57 | 135 | 1.5665 | | 1.565 | 10.55 | 148 | 1.5258 | | 1.519 | 11.57 | 162 | 1.4776 | | 1.4593 | 12.55 | 175 | 1.4281 | | 1.4156 | 13.57 | 189 | 1.3676 | | 1.3512 | 14.55 | 202 | 1.3222 | | 1.3146 | 15.57 | 216 | 1.2825 | | 1.2798 | 16.55 | 229 | 1.2492 | | 1.2532 | 17.57 | 243 | 1.2225 | | 1.2277 | 18.55 | 256 | 1.2033 | | 1.208 | 19.57 | 270 | 1.1832 | | 1.1944 | 20.55 | 283 | 1.1732 | | 1.1799 | 21.57 | 297 | 1.1586 | | 1.1621 | 22.55 | 310 | 1.1494 | | 1.1448 | 23.57 | 324 | 1.1393 | | 1.1564 | 24.55 | 337 | 1.1301 | | 1.1293 | 25.57 | 351 | 1.1233 | | 1.1228 | 26.55 | 364 | 1.1160 | | 1.1266 | 27.57 | 378 | 1.1106 | | 1.1159 | 28.55 | 391 | 1.1047 | | 1.125 | 29.57 | 405 | 1.0989 | | 1.094 | 30.55 | 418 | 1.0941 | | 1.1077 | 31.57 | 432 | 1.0903 | | 1.0874 | 32.55 | 445 | 1.0834 | | 1.0957 | 33.57 | 459 | 1.0769 | | 1.0755 | 34.55 | 472 | 1.0750 | | 1.0705 | 35.57 | 486 | 1.0719 | | 1.0749 | 36.55 | 499 | 1.0688 | | 1.0742 | 37.57 | 513 | 1.0641 | | 1.064 | 38.55 | 526 | 1.0626 | | 1.0569 | 39.57 | 540 | 1.0593 | | 1.0686 | 40.55 | 553 | 1.0554 | | 1.059 | 41.57 | 567 | 1.0517 | | 1.0588 | 42.55 | 580 | 1.0469 | | 1.0447 | 43.57 | 594 | 1.0471 | | 1.0356 | 44.55 | 607 | 1.0421 | | 1.0431 | 45.57 | 621 | 1.0416 | | 1.0195 | 46.55 | 634 | 1.0387 | | 1.0326 | 47.57 | 648 | 1.0356 | | 1.0227 | 48.55 | 661 | 1.0341 | | 1.0403 | 49.57 | 675 | 1.0317 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.14.1