--- base_model: nvidia/mit-b0 library_name: transformers license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-test results: [] --- # segformer-b0-finetuned-test This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2090 - Mean Iou: 0.5696 - Mean Accuracy: 0.6654 - Overall Accuracy: 0.9106 - Accuracy Structure (dimensional): nan - Accuracy Impervious (planiform): 0.9401 - Accuracy Fences: 0.0 - Accuracy Water storage/tank: nan - Accuracy Pool < 100 sqft: nan - Accuracy Pool > 100 sqft: 0.9530 - Accuracy Irrigated planiform: 0.8838 - Accuracy Irrigated dimensional low: 0.8370 - Accuracy Irrigated dimensional high: 0.9432 - Accuracy Irrigated bare: 0.4234 - Accuracy Irrigable planiform: 0.8112 - Accuracy Irrigable dimensional low: 0.5718 - Accuracy Irrigable dimensional high: 0.9410 - Accuracy Irrigable bare: 0.7245 - Accuracy Native planiform: nan - Accuracy Native dimensional low: 0.0 - Accuracy Native dimensional high: 0.0 - Accuracy Native bare: 0.9472 - Accuracy Udl: nan - Accuracy Open water: 0.9967 - Accuracy Artificial turf: 0.6743 - Iou Structure (dimensional): 0.0 - Iou Impervious (planiform): 0.8873 - Iou Fences: 0.0 - Iou Water storage/tank: nan - Iou Pool < 100 sqft: nan - Iou Pool > 100 sqft: 0.8999 - Iou Irrigated planiform: 0.7859 - Iou Irrigated dimensional low: 0.7122 - Iou Irrigated dimensional high: 0.8937 - Iou Irrigated bare: 0.3648 - Iou Irrigable planiform: 0.7323 - Iou Irrigable dimensional low: 0.4772 - Iou Irrigable dimensional high: 0.8844 - Iou Irrigable bare: 0.6417 - Iou Native planiform: nan - Iou Native dimensional low: 0.0 - Iou Native dimensional high: 0.0 - Iou Native bare: 0.8356 - Iou Udl: nan - Iou Open water: 0.9389 - Iou Artificial turf: 0.6287 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Structure (dimensional) | Accuracy Impervious (planiform) | Accuracy Fences | Accuracy Water storage/tank | Accuracy Pool < 100 sqft | Accuracy Pool > 100 sqft | Accuracy Irrigated planiform | Accuracy Irrigated dimensional low | Accuracy Irrigated dimensional high | Accuracy Irrigated bare | Accuracy Irrigable planiform | Accuracy Irrigable dimensional low | Accuracy Irrigable dimensional high | Accuracy Irrigable bare | Accuracy Native planiform | Accuracy Native dimensional low | Accuracy Native dimensional high | Accuracy Native bare | Accuracy Udl | Accuracy Open water | Accuracy Artificial turf | Iou Structure (dimensional) | Iou Impervious (planiform) | Iou Fences | Iou Water storage/tank | Iou Pool < 100 sqft | Iou Pool > 100 sqft | Iou Irrigated planiform | Iou Irrigated dimensional low | Iou Irrigated dimensional high | Iou Irrigated bare | Iou Irrigable planiform | Iou Irrigable dimensional low | Iou Irrigable dimensional high | Iou Irrigable bare | Iou Native planiform | Iou Native dimensional low | Iou Native dimensional high | Iou Native bare | Iou Udl | Iou Open water | Iou Artificial turf | |:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------------------------:|:-------------------------------:|:---------------:|:---------------------------:|:------------------------:|:------------------------:|:----------------------------:|:----------------------------------:|:-----------------------------------:|:-----------------------:|:----------------------------:|:----------------------------------:|:-----------------------------------:|:-----------------------:|:-------------------------:|:-------------------------------:|:--------------------------------:|:--------------------:|:------------:|:-------------------:|:------------------------:|:---------------------------:|:--------------------------:|:----------:|:----------------------:|:-------------------:|:-------------------:|:-----------------------:|:-----------------------------:|:------------------------------:|:------------------:|:-----------------------:|:-----------------------------:|:------------------------------:|:------------------:|:--------------------:|:--------------------------:|:---------------------------:|:---------------:|:-------:|:--------------:|:-------------------:| | 0.2526 | 15.3846 | 200 | 0.2090 | 0.5696 | 0.6654 | 0.9106 | nan | 0.9401 | 0.0 | nan | nan | 0.9530 | 0.8838 | 0.8370 | 0.9432 | 0.4234 | 0.8112 | 0.5718 | 0.9410 | 0.7245 | nan | 0.0 | 0.0 | 0.9472 | nan | 0.9967 | 0.6743 | 0.0 | 0.8873 | 0.0 | nan | nan | 0.8999 | 0.7859 | 0.7122 | 0.8937 | 0.3648 | 0.7323 | 0.4772 | 0.8844 | 0.6417 | nan | 0.0 | 0.0 | 0.8356 | nan | 0.9389 | 0.6287 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1