Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load DeepSeek model
|
6 |
+
model_id = "deepseek-ai/deepseek-llm-7b-chat"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
|
9 |
+
|
10 |
+
|
11 |
+
def generate_response(prompt):
|
12 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
13 |
+
outputs = model.generate(
|
14 |
+
**inputs,
|
15 |
+
do_sample=True,
|
16 |
+
temperature=1.0,
|
17 |
+
top_p=0.9
|
18 |
+
)
|
19 |
+
|
20 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
21 |
+
# return "Hello " + name + "!!"
|
22 |
+
|
23 |
+
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
|
24 |
+
demo.launch()
|