import torch import torch.nn as nn from torch.nn import init import functools from torch.optim import lr_scheduler import torch.nn.functional as F from models.layer import * ############################################################################### # Helper Functions ############################################################################### class Identity(nn.Module): def forward(self, x): return x def get_norm_layer(norm_type='instance'): """Return a normalization layer Parameters: norm_type (str) -- the name of the normalization layer: batch | instance | none For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev). For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics. """ if norm_type == 'batch': norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True) elif norm_type == 'instance': norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False) elif norm_type == 'none': def norm_layer(x): return Identity() else: raise NotImplementedError('normalization layer [%s] is not found' % norm_type) return norm_layer def get_scheduler(optimizer, opt): """Return a learning rate scheduler Parameters: optimizer -- the optimizer of the network opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions.  opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine For 'linear', we keep the same learning rate for the first epochs and linearly decay the rate to zero over the next epochs. For other schedulers (step, plateau, and cosine), we use the default PyTorch schedulers. See https://pytorch.org/docs/stable/optim.html for more details. """ if opt.lr_policy == 'linear': def lambda_rule(epoch): lr_l = 1.0 - max(0, epoch + opt.epoch_count - opt.n_epochs) / float(opt.n_epochs_decay + 1) return lr_l scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule) elif opt.lr_policy == 'step': scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1) elif opt.lr_policy == 'plateau': scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5) elif opt.lr_policy == 'cosine': scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.n_epochs, eta_min=0) else: return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy) return scheduler def init_weights(net, init_type='normal', init_gain=0.02): """Initialize network weights. Parameters: net (network) -- network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal init_gain (float) -- scaling factor for normal, xavier and orthogonal. We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might work better for some applications. Feel free to try yourself. """ def init_func(m): # define the initialization function classname = m.__class__.__name__ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): if init_type == 'normal': init.normal_(m.weight.data, 0.0, init_gain) elif init_type == 'xavier': init.xavier_normal_(m.weight.data, gain=init_gain) elif init_type == 'kaiming': init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': init.orthogonal_(m.weight.data, gain=init_gain) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) if hasattr(m, 'bias') and m.bias is not None: init.constant_(m.bias.data, 0.0) elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies. init.normal_(m.weight.data, 1.0, init_gain) init.constant_(m.bias.data, 0.0) print('initialize network with %s' % init_type) net.apply(init_func) # apply the initialization function def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[]): """Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights Parameters: net (network) -- the network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Return an initialized network. """ if len(gpu_ids) > 0: assert(torch.cuda.is_available()) net.to(gpu_ids[0]) net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs init_weights(net, init_type, init_gain=init_gain) return net def define_G(input_nc, output_nc, ngf, netG, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02, gpu_ids=[]): net = None norm_layer = get_norm_layer(norm_type=norm) if netG == 'ref_unpair_cbam_cat': net = ref_unpair(input_nc, output_nc, ngf, norm ='inorm',status='ref_unpair_cbam_cat') elif netG == 'ref_unpair_recon': net = ref_unpair(input_nc, output_nc, ngf, norm ='inorm', status='ref_unpair_recon') elif netG == 'triplet': net = triplet(input_nc, output_nc, ngf, norm ='inorm') else: raise NotImplementedError('Generator model name [%s] is not recognized' % netG) return init_net(net, init_type, init_gain, gpu_ids) class AdaIN(nn.Module): def __init__(self): super().__init__() def forward(self, x, y): eps = 1e-5 mean_x = torch.mean(x, dim=[2,3]) mean_y = torch.mean(y, dim=[2,3]) std_x = torch.std(x, dim=[2,3]) std_y = torch.std(y, dim=[2,3]) mean_x = mean_x.unsqueeze(-1).unsqueeze(-1) mean_y = mean_y.unsqueeze(-1).unsqueeze(-1) std_x = std_x.unsqueeze(-1).unsqueeze(-1) + eps std_y = std_y.unsqueeze(-1).unsqueeze(-1) + eps out = (x - mean_x)/ std_x * std_y + mean_y return out class HED(nn.Module): def __init__(self): super(HED, self).__init__() self.moduleVggOne = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=False), nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=False) ) self.moduleVggTwo = nn.Sequential( nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=False), nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=False) ) self.moduleVggThr = nn.Sequential( nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=False), nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=False), nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=False) ) self.moduleVggFou = nn.Sequential( nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=False), nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=False), nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=False) ) self.moduleVggFiv = nn.Sequential( nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=False), nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=False), nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=False) ) self.moduleScoreOne = nn.Conv2d(in_channels=64, out_channels=1, kernel_size=1, stride=1, padding=0) self.moduleScoreTwo = nn.Conv2d(in_channels=128, out_channels=1, kernel_size=1, stride=1, padding=0) self.moduleScoreThr = nn.Conv2d(in_channels=256, out_channels=1, kernel_size=1, stride=1, padding=0) self.moduleScoreFou = nn.Conv2d(in_channels=512, out_channels=1, kernel_size=1, stride=1, padding=0) self.moduleScoreFiv = nn.Conv2d(in_channels=512, out_channels=1, kernel_size=1, stride=1, padding=0) self.moduleCombine = nn.Sequential( nn.Conv2d(in_channels=5, out_channels=1, kernel_size=1, stride=1, padding=0), nn.Sigmoid() ) def forward(self, tensorInput): tensorBlue = (tensorInput[:, 2:3, :, :] * 255.0) - 104.00698793 tensorGreen = (tensorInput[:, 1:2, :, :] * 255.0) - 116.66876762 tensorRed = (tensorInput[:, 0:1, :, :] * 255.0) - 122.67891434 tensorInput = torch.cat([ tensorBlue, tensorGreen, tensorRed ], 1) tensorVggOne = self.moduleVggOne(tensorInput) tensorVggTwo = self.moduleVggTwo(tensorVggOne) tensorVggThr = self.moduleVggThr(tensorVggTwo) tensorVggFou = self.moduleVggFou(tensorVggThr) tensorVggFiv = self.moduleVggFiv(tensorVggFou) tensorScoreOne = self.moduleScoreOne(tensorVggOne) tensorScoreTwo = self.moduleScoreTwo(tensorVggTwo) tensorScoreThr = self.moduleScoreThr(tensorVggThr) tensorScoreFou = self.moduleScoreFou(tensorVggFou) tensorScoreFiv = self.moduleScoreFiv(tensorVggFiv) tensorScoreOne = nn.functional.interpolate(input=tensorScoreOne, size=(tensorInput.size(2), tensorInput.size(3)), mode='bilinear', align_corners=False) tensorScoreTwo = nn.functional.interpolate(input=tensorScoreTwo, size=(tensorInput.size(2), tensorInput.size(3)), mode='bilinear', align_corners=False) tensorScoreThr = nn.functional.interpolate(input=tensorScoreThr, size=(tensorInput.size(2), tensorInput.size(3)), mode='bilinear', align_corners=False) tensorScoreFou = nn.functional.interpolate(input=tensorScoreFou, size=(tensorInput.size(2), tensorInput.size(3)), mode='bilinear', align_corners=False) tensorScoreFiv = nn.functional.interpolate(input=tensorScoreFiv, size=(tensorInput.size(2), tensorInput.size(3)), mode='bilinear', align_corners=False) return self.moduleCombine(torch.cat([ tensorScoreOne, tensorScoreTwo, tensorScoreThr, tensorScoreFou, tensorScoreFiv ], 1)) #return self.moduleCombine(torch.cat([ tensorScoreOne, tensorScoreTwo, tensorScoreThr, tensorScoreOne, tensorScoreTwo ], 1)) #return torch.sigmoid(tensorScoreOne),torch.sigmoid(tensorScoreTwo),torch.sigmoid(tensorScoreThr),torch.sigmoid(tensorScoreFou),torch.sigmoid(tensorScoreFiv),self.moduleCombine(torch.cat([ tensorScoreOne, tensorScoreTwo, tensorScoreThr, tensorScoreFou, tensorScoreFiv ], 1)) #return torch.sigmoid(tensorScoreTwo) def define_HED(init_weights_, gpu_ids_=[]): net = HED() if len(gpu_ids_) > 0: assert(torch.cuda.is_available()) net.to(gpu_ids_[0]) net = torch.nn.DataParallel(net, gpu_ids_) # multi-GPUs if not init_weights_ == None: device = torch.device('cuda:{}'.format(gpu_ids_[0])) if gpu_ids_ else torch.device('cpu') print('Loading model from: %s'%init_weights_) state_dict = torch.load(init_weights_, map_location=str(device)) if isinstance(net, torch.nn.DataParallel): net.module.load_state_dict(state_dict) else: net.load_state_dict(state_dict) print('load the weights successfully') return net def define_styletps(init_weights_, gpu_ids_=[],shape=False): net = None if shape == False: net = triplet() if len(gpu_ids_) > 0: assert(torch.cuda.is_available()) net.to(gpu_ids_[0]) net = torch.nn.DataParallel(net, gpu_ids_) # multi-GPUs if not init_weights_ == None: device = torch.device('cuda:{}'.format(gpu_ids_[0])) if gpu_ids_ else torch.device('cpu') print('Loading model from: %s'%init_weights_) state_dict = torch.load(init_weights_, map_location=str(device)) if isinstance(net, torch.nn.DataParallel): net.module.load_state_dict(state_dict) else: net.load_state_dict(state_dict) print('load the weights successfully') return net class triplet(nn.Module): def __init__(self): #mnblk=4 super(triplet, self).__init__() # self.channels = nch_in self.nch_in = 1 self.nch_out = 1 self.nch_ker = 64 self.norm = 'bnorm' #self.nblk = nblk if self.norm == 'bnorm': self.bias = False else: self.bias = True self.conv0 = CNR2d(self.nch_in, self.nch_ker, kernel_size=7, stride=1, padding=3, norm=self.norm, relu=0.0) self.conv1 = CNR2d(self.nch_ker, 2 * self.nch_ker, kernel_size=4, stride=2, padding=1, norm=self.norm, relu=0.0) self.conv2 = CNR2d(2 * self.nch_ker, 4 * self.nch_ker, kernel_size=4, stride=2, padding=1, norm=self.norm, relu=0.0) self.final_pool = nn.AdaptiveAvgPool2d((1,1)) self.linear = nn.Linear(256, 128) def forward(self,x,y,z): x = self.conv0(x) x = self.conv1(x) x = self.conv2(x) x = self.final_pool(x) x = torch.flatten(x,1) x = self.linear(x) y = self.conv0(y) y = self.conv1(y) y = self.conv2(y) y = self.final_pool(y) y = torch.flatten(y,1) y = self.linear(y) z = self.conv0(z) z = self.conv1(z) z = self.conv2(z) z = self.final_pool(z) z = torch.flatten(z,1) z = self.linear(z) return x,y,z class MLP(nn.Module): def __init__(self, input_dim, output_dim, dim, n_blk, norm='none', activ='relu'): super(MLP, self).__init__() self.model = [] self.model += [LinearBlock(input_dim, dim, norm=norm, activation=activ)] for i in range(n_blk - 2): self.model += [LinearBlock(dim, dim, norm=norm, activation=activ)] self.model += [LinearBlock(dim, output_dim, norm='none', activation='none')] # no output activations self.model = nn.Sequential(*self.model) def forward(self, x): return self.model(x.view(x.size(0), -1)) class ref_unpair(nn.Module): def __init__(self, nch_in, nch_out, nch_ker=64, norm='bnorm', nblk=4, status='ref_unpair'): super(ref_unpair, self).__init__() nch_ker=64 #self.channels = nch_in self.nch_in = nch_in self.nchs_in = 1 self.status = status if self.status == 'ref_unpair_recon': self.nch_out = 3 self.nch_in = 1 else: self.nch_out = 1 self.nch_ker = nch_ker self.norm = norm self.nblk = nblk self.dec0 = [] if status == 'ref_unpair_cbam_cat': self.cbam_c = CBAM(nch_ker*8,16,3,cbam_status="channel") self.cbam_s = CBAM(nch_ker*8,16,3,cbam_status="spatial") self.enc1_s = CNR2d(self.nchs_in, self.nch_ker, kernel_size=7, stride=1, padding=3, norm=self.norm, relu=0.0) self.enc2_s = CNR2d(self.nch_ker, 2 * self.nch_ker, kernel_size=4, stride=2, padding=1, norm=self.norm, relu=0.0) self.enc3_s = CNR2d(2 * self.nch_ker, 4 * self.nch_ker, kernel_size=4, stride=2, padding=1, norm=self.norm, relu=0.0) self.enc4_s = CNR2d(4 * self.nch_ker, 8 * self.nch_ker, kernel_size=4, stride=2, padding=1, norm=self.norm, relu=0.0) if norm == 'bnorm': self.bias = False else: self.bias = True self.enc1_c = CNR2d(self.nch_in, self.nch_ker, kernel_size=7, stride=1, padding=3, norm=self.norm, relu=0.0) self.enc2_c = CNR2d(self.nch_ker, 2 * self.nch_ker, kernel_size=4, stride=2, padding=1, norm=self.norm, relu=0.0) self.enc3_c = CNR2d(2 * self.nch_ker, 4 * self.nch_ker, kernel_size=4, stride=2, padding=1, norm=self.norm, relu=0.0) self.enc4_c = CNR2d(4 * self.nch_ker, 8 * self.nch_ker, kernel_size=4, stride=2, padding=1, norm=self.norm, relu=0.0) if status == 'ref_unpair_cbam_cat': self.res_cat1 = ResBlock_cat(8 * self.nch_ker, 8 * self.nch_ker, kernel_size=3, stride=1, padding=1, norm=self.norm, relu=0.0, padding_mode='reflection') self.res_cat2 = ResBlock_cat(8 * self.nch_ker, 8 * self.nch_ker, kernel_size=3, stride=1, padding=1, norm=self.norm, relu=0.0, padding_mode='reflection') self.res_cat3 = ResBlock_cat(8 * self.nch_ker, 8 * self.nch_ker, kernel_size=3, stride=1, padding=1, norm=self.norm, relu=0.0, padding_mode='reflection') self.res_cat4 = ResBlock_cat(8 * self.nch_ker, 8 * self.nch_ker, kernel_size=3, stride=1, padding=1, norm=self.norm, relu=0.0, padding_mode='reflection') if self.nblk and status !='ref_unpair_cbam_cat': res = [] for i in range(self.nblk): res += [ResBlock(8 * self.nch_ker, 8 * self.nch_ker, kernel_size=3, stride=1, padding=1, norm=self.norm, relu=0.0, padding_mode='reflection')] self.res1 = nn.Sequential(*res) #self.dec0 += [DECNR2d(16 * self.nch_ker, 8 * self.nch_ker, kernel_size=4, stride=2, padding=1, norm=self.norm, relu=0.0)] self.dec0 += [DECNR2d(8 * self.nch_ker, 4 * self.nch_ker, kernel_size=4, stride=2, padding=1, norm=self.norm, relu=0.0)] self.dec0 += [DECNR2d(4 * self.nch_ker, 2 * self.nch_ker, kernel_size=4, stride=2, padding=1, norm=self.norm, relu=0.0)] self.dec0 += [DECNR2d(2 * self.nch_ker, 1 * self.nch_ker, kernel_size=4, stride=2, padding=1, norm=self.norm, relu=0.0)] self.dec0 += [DECNR2d(1 * self.nch_ker, 1 * self.nch_ker, kernel_size=7, stride=1, padding=3, norm=self.norm, relu=0.0)] self.dec0 += [nn.Conv2d(1 * self.nch_ker, self.nch_out, kernel_size=3, stride=1, padding=1)] self.dec = nn.Sequential(*self.dec0) def forward(self, content,style): content_cs = self.enc1_c(content) content_cs = self.enc2_c(content_cs) content_cs = self.enc3_c(content_cs) content_cs = self.enc4_c(content_cs) #content_cs = self.enc5_c(content_cs) if self.status == 'ref_unpair_cbam_cat': cbam_content_cs = self.cbam_s(content_cs) sp_content_cs = content_cs + cbam_content_cs style_cs = self.enc1_s(style) style_cs = self.enc2_s(style_cs) style_cs = self.enc3_s(style_cs) style_cs = self.enc4_s(style_cs) cbam_style_cs = self.cbam_c(style_cs) ch_style_cs = style_cs + cbam_style_cs content_output =self.adaptive_instance_normalization(content_cs ,style_cs) cbam_content_output =self.adaptive_instance_normalization(sp_content_cs ,ch_style_cs) content_output = self.res_cat1(content_output,cbam_content_output) content_output = self.res_cat2(content_output,cbam_content_output) content_output = self.res_cat3(content_output,cbam_content_output) content_output = self.res_cat4(content_output,cbam_content_output) else: content_output = content_cs if self.nblk and self.status !='ref_unpair_cbam_cat': content_cs = self.res1(content_output) content_output = self.dec(content_output) content_output = torch.tanh(content_output) return content_output def calc_mean_std(self, feat, eps=1e-5): # eps is a small value added to the variance to avoid divide-by-zero. size = feat.size() assert (len(size) == 4) N, C = size[:2] feat_var = feat.view(N, C, -1).var(dim=2) + eps feat_std = feat_var.sqrt().view(N, C, 1, 1) feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1) return feat_mean, feat_std def adaptive_instance_normalization(self, content_feat, style_feat): assert (content_feat.size()[:2] == style_feat.size()[:2]) size = content_feat.size() style_mean, style_std = self.calc_mean_std(style_feat) content_mean, content_std = self.calc_mean_std(content_feat) normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size) return normalized_feat * style_std.expand(size) + style_mean.expand(size) def define_D(input_nc, ndf, netD, n_layers_D=3, norm='batch', init_type='normal', init_gain=0.02, gpu_ids=[]): net = None norm_layer = get_norm_layer(norm_type=norm) if netD == 'basic': # default PatchGAN classifier net = NLayerDiscriminator(input_nc, ndf, n_layers=3, norm_layer=norm_layer) elif netD == 'n_layers': # more options net = NLayerDiscriminator(input_nc, ndf, n_layers_D, norm_layer=norm_layer) elif netD == 'pixel': # classify if each pixel is real or fake net = PixelDiscriminator(input_nc, ndf, norm_layer=norm_layer) else: raise NotImplementedError('Discriminator model name [%s] is not recognized' % netD) return init_net(net, init_type, init_gain, gpu_ids) ############################################################################## # Classes ############################################################################## class GANLoss(nn.Module): """Define different GAN objectives. The GANLoss class abstracts away the need to create the target label tensor that has the same size as the input. """ def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0): """ Initialize the GANLoss class. Parameters: gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp. target_real_label (bool) - - label for a real image target_fake_label (bool) - - label of a fake image Note: Do not use sigmoid as the last layer of Discriminator. LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss. """ super(GANLoss, self).__init__() self.register_buffer('real_label', torch.tensor(target_real_label)) self.register_buffer('fake_label', torch.tensor(target_fake_label)) self.gan_mode = gan_mode if gan_mode == 'lsgan': self.loss = nn.MSELoss() elif gan_mode == 'vanilla': self.loss = nn.BCEWithLogitsLoss() elif gan_mode in ['wgangp']: self.loss = None else: raise NotImplementedError('gan mode %s not implemented' % gan_mode) def get_target_tensor(self, prediction, target_is_real): if target_is_real: target_tensor = self.real_label else: target_tensor = self.fake_label return target_tensor.expand_as(prediction) def __call__(self, prediction, target_is_real): if self.gan_mode in ['lsgan', 'vanilla']: target_tensor = self.get_target_tensor(prediction, target_is_real) loss = self.loss(prediction, target_tensor) elif self.gan_mode == 'wgangp': if target_is_real: loss = -prediction.mean() else: loss = prediction.mean() return loss def cal_gradient_penalty(netD, real_data, fake_data, device, type='mixed', constant=1.0, lambda_gp=10.0): if lambda_gp > 0.0: if type == 'real': # either use real images, fake images, or a linear interpolation of two. interpolatesv = real_data elif type == 'fake': interpolatesv = fake_data elif type == 'mixed': alpha = torch.rand(real_data.shape[0], 1, device=device) alpha = alpha.expand(real_data.shape[0], real_data.nelement() // real_data.shape[0]).contiguous().view(*real_data.shape) interpolatesv = alpha * real_data + ((1 - alpha) * fake_data) else: raise NotImplementedError('{} not implemented'.format(type)) interpolatesv.requires_grad_(True) disc_interpolates = netD(interpolatesv) gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolatesv, grad_outputs=torch.ones(disc_interpolates.size()).to(device), create_graph=True, retain_graph=True, only_inputs=True) gradients = gradients[0].view(real_data.size(0), -1) # flat the data gradient_penalty = (((gradients + 1e-16).norm(2, dim=1) - constant) ** 2).mean() * lambda_gp # added eps return gradient_penalty, gradients else: return 0.0, None class NLayerDiscriminator(nn.Module): """Defines a PatchGAN discriminator""" def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d): """Construct a PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator norm_layer -- normalization layer """ super(NLayerDiscriminator, self).__init__() if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d kw = 4 padw = 1 sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): # gradually increase the number of filters nf_mult_prev = nf_mult nf_mult = min(2 ** n, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2 ** n_layers, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map self.model = nn.Sequential(*sequence) def forward(self, input): """Standard forward.""" return self.model(input) class PixelDiscriminator(nn.Module): """Defines a 1x1 PatchGAN discriminator (pixelGAN)""" def __init__(self, input_nc, ndf=64, norm_layer=nn.BatchNorm2d): """Construct a 1x1 PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer """ super(PixelDiscriminator, self).__init__() if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d self.net = [ nn.Conv2d(input_nc, ndf, kernel_size=1, stride=1, padding=0), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf, ndf * 2, kernel_size=1, stride=1, padding=0, bias=use_bias), norm_layer(ndf * 2), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf * 2, 1, kernel_size=1, stride=1, padding=0, bias=use_bias)] self.net = nn.Sequential(*self.net) def forward(self, input): """Standard forward.""" return self.net(input) import math class CBAM(nn.Module): def __init__(self, n_channels_in, reduction_ratio, kernel_size,cbam_status): super(CBAM, self).__init__() self.n_channels_in = n_channels_in self.reduction_ratio = reduction_ratio self.kernel_size = kernel_size self.channel_attention = ChannelAttention_nopara(n_channels_in, reduction_ratio) self.spatial_attention = SpatialAttention_nopara(kernel_size) self.status = cbam_status def forward(self, x): ## We don't use cbam in this version if self.status == "cbam": chan_att = self.channel_attention(x) fp = chan_att * x spat_att = self.spatial_attention(fp) fpp = spat_att * fp if self.status == "spatial": spat_att = self.spatial_attention(x) #* s_para_1d fpp = spat_att * x if self.status == "channel": chan_att = self.channel_attention(x) #* c_para_1d fpp = chan_att * x return fpp #,c_wgt,s_wgt class SpatialAttention_nopara(nn.Module): def __init__(self, kernel_size): super(SpatialAttention_nopara, self).__init__() self.kernel_size = kernel_size assert kernel_size % 2 == 1, "Odd kernel size required" self.conv = nn.Conv2d(in_channels = 2, out_channels = 1, kernel_size = kernel_size, padding= int((kernel_size-1)/2)) def forward(self, x): max_pool = self.agg_channel(x, "max") avg_pool = self.agg_channel(x, "avg") pool = torch.cat([max_pool, avg_pool], dim = 1) conv = self.conv(pool) conv = conv.repeat(1,x.size()[1],1,1) att = torch.sigmoid(conv) return att def agg_channel(self, x, pool = "max"): b,c,h,w = x.size() x = x.view(b, c, h*w) x = x.permute(0,2,1) if pool == "max": x = F.max_pool1d(x,c) elif pool == "avg": x = F.avg_pool1d(x,c) x = x.permute(0,2,1) x = x.view(b,1,h,w) return x class ChannelAttention_nopara(nn.Module): def __init__(self, n_channels_in, reduction_ratio): super(ChannelAttention_nopara, self).__init__() self.n_channels_in = n_channels_in self.reduction_ratio = reduction_ratio self.middle_layer_size = int(self.n_channels_in/ float(self.reduction_ratio)) self.bottleneck = nn.Sequential( nn.Linear(self.n_channels_in, self.middle_layer_size), nn.ReLU(), nn.Linear(self.middle_layer_size, self.n_channels_in) ) def forward(self, x): kernel = (x.size()[2], x.size()[3]) avg_pool = F.avg_pool2d(x, kernel ) max_pool = F.max_pool2d(x, kernel) avg_pool = avg_pool.view(avg_pool.size()[0], -1) max_pool = max_pool.view(max_pool.size()[0], -1) avg_pool_bck = self.bottleneck(avg_pool) max_pool_bck = self.bottleneck(max_pool) pool_sum = avg_pool_bck + max_pool_bck sig_pool = torch.sigmoid(pool_sum) sig_pool = sig_pool.unsqueeze(2).unsqueeze(3) #out = sig_pool.repeat(1,1,kernel[0], kernel[1]) return sig_pool