File size: 32,113 Bytes
b4f7b8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 |
import torch
import torch.nn as nn
from torch.nn import init
import functools
from torch.optim import lr_scheduler
import torch.nn.functional as F
from models.layer import *
###############################################################################
# Helper Functions
###############################################################################
class Identity(nn.Module):
def forward(self, x):
return x
def get_norm_layer(norm_type='instance'):
"""Return a normalization layer
Parameters:
norm_type (str) -- the name of the normalization layer: batch | instance | none
For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev).
For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics.
"""
if norm_type == 'batch':
norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True)
elif norm_type == 'instance':
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
elif norm_type == 'none':
def norm_layer(x): return Identity()
else:
raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
return norm_layer
def get_scheduler(optimizer, opt):
"""Return a learning rate scheduler
Parameters:
optimizer -- the optimizer of the network
opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions.
opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine
For 'linear', we keep the same learning rate for the first <opt.n_epochs> epochs
and linearly decay the rate to zero over the next <opt.n_epochs_decay> epochs.
For other schedulers (step, plateau, and cosine), we use the default PyTorch schedulers.
See https://pytorch.org/docs/stable/optim.html for more details.
"""
if opt.lr_policy == 'linear':
def lambda_rule(epoch):
lr_l = 1.0 - max(0, epoch + opt.epoch_count - opt.n_epochs) / float(opt.n_epochs_decay + 1)
return lr_l
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
elif opt.lr_policy == 'step':
scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1)
elif opt.lr_policy == 'plateau':
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5)
elif opt.lr_policy == 'cosine':
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.n_epochs, eta_min=0)
else:
return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy)
return scheduler
def init_weights(net, init_type='normal', init_gain=0.02):
"""Initialize network weights.
Parameters:
net (network) -- network to be initialized
init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
init_gain (float) -- scaling factor for normal, xavier and orthogonal.
We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might
work better for some applications. Feel free to try yourself.
"""
def init_func(m): # define the initialization function
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, init_gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=init_gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=init_gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies.
init.normal_(m.weight.data, 1.0, init_gain)
init.constant_(m.bias.data, 0.0)
print('initialize network with %s' % init_type)
net.apply(init_func) # apply the initialization function <init_func>
def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[]):
"""Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights
Parameters:
net (network) -- the network to be initialized
init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
gain (float) -- scaling factor for normal, xavier and orthogonal.
gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2
Return an initialized network.
"""
if len(gpu_ids) > 0:
assert(torch.cuda.is_available())
net.to(gpu_ids[0])
net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs
init_weights(net, init_type, init_gain=init_gain)
return net
def define_G(input_nc, output_nc, ngf, netG, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02, gpu_ids=[]):
net = None
norm_layer = get_norm_layer(norm_type=norm)
if netG == 'ref_unpair_cbam_cat':
net = ref_unpair(input_nc, output_nc, ngf, norm ='inorm',status='ref_unpair_cbam_cat')
elif netG == 'ref_unpair_recon':
net = ref_unpair(input_nc, output_nc, ngf, norm ='inorm', status='ref_unpair_recon')
elif netG == 'triplet':
net = triplet(input_nc, output_nc, ngf, norm ='inorm')
else:
raise NotImplementedError('Generator model name [%s] is not recognized' % netG)
return init_net(net, init_type, init_gain, gpu_ids)
class AdaIN(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, y):
eps = 1e-5
mean_x = torch.mean(x, dim=[2,3])
mean_y = torch.mean(y, dim=[2,3])
std_x = torch.std(x, dim=[2,3])
std_y = torch.std(y, dim=[2,3])
mean_x = mean_x.unsqueeze(-1).unsqueeze(-1)
mean_y = mean_y.unsqueeze(-1).unsqueeze(-1)
std_x = std_x.unsqueeze(-1).unsqueeze(-1) + eps
std_y = std_y.unsqueeze(-1).unsqueeze(-1) + eps
out = (x - mean_x)/ std_x * std_y + mean_y
return out
class HED(nn.Module):
def __init__(self):
super(HED, self).__init__()
self.moduleVggOne = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=False),
nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=False)
)
self.moduleVggTwo = nn.Sequential(
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=False),
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=False)
)
self.moduleVggThr = nn.Sequential(
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=False),
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=False),
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=False)
)
self.moduleVggFou = nn.Sequential(
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=False),
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=False),
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=False)
)
self.moduleVggFiv = nn.Sequential(
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=False),
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=False),
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=False)
)
self.moduleScoreOne = nn.Conv2d(in_channels=64, out_channels=1, kernel_size=1, stride=1, padding=0)
self.moduleScoreTwo = nn.Conv2d(in_channels=128, out_channels=1, kernel_size=1, stride=1, padding=0)
self.moduleScoreThr = nn.Conv2d(in_channels=256, out_channels=1, kernel_size=1, stride=1, padding=0)
self.moduleScoreFou = nn.Conv2d(in_channels=512, out_channels=1, kernel_size=1, stride=1, padding=0)
self.moduleScoreFiv = nn.Conv2d(in_channels=512, out_channels=1, kernel_size=1, stride=1, padding=0)
self.moduleCombine = nn.Sequential(
nn.Conv2d(in_channels=5, out_channels=1, kernel_size=1, stride=1, padding=0),
nn.Sigmoid()
)
def forward(self, tensorInput):
tensorBlue = (tensorInput[:, 2:3, :, :] * 255.0) - 104.00698793
tensorGreen = (tensorInput[:, 1:2, :, :] * 255.0) - 116.66876762
tensorRed = (tensorInput[:, 0:1, :, :] * 255.0) - 122.67891434
tensorInput = torch.cat([ tensorBlue, tensorGreen, tensorRed ], 1)
tensorVggOne = self.moduleVggOne(tensorInput)
tensorVggTwo = self.moduleVggTwo(tensorVggOne)
tensorVggThr = self.moduleVggThr(tensorVggTwo)
tensorVggFou = self.moduleVggFou(tensorVggThr)
tensorVggFiv = self.moduleVggFiv(tensorVggFou)
tensorScoreOne = self.moduleScoreOne(tensorVggOne)
tensorScoreTwo = self.moduleScoreTwo(tensorVggTwo)
tensorScoreThr = self.moduleScoreThr(tensorVggThr)
tensorScoreFou = self.moduleScoreFou(tensorVggFou)
tensorScoreFiv = self.moduleScoreFiv(tensorVggFiv)
tensorScoreOne = nn.functional.interpolate(input=tensorScoreOne, size=(tensorInput.size(2), tensorInput.size(3)), mode='bilinear', align_corners=False)
tensorScoreTwo = nn.functional.interpolate(input=tensorScoreTwo, size=(tensorInput.size(2), tensorInput.size(3)), mode='bilinear', align_corners=False)
tensorScoreThr = nn.functional.interpolate(input=tensorScoreThr, size=(tensorInput.size(2), tensorInput.size(3)), mode='bilinear', align_corners=False)
tensorScoreFou = nn.functional.interpolate(input=tensorScoreFou, size=(tensorInput.size(2), tensorInput.size(3)), mode='bilinear', align_corners=False)
tensorScoreFiv = nn.functional.interpolate(input=tensorScoreFiv, size=(tensorInput.size(2), tensorInput.size(3)), mode='bilinear', align_corners=False)
return self.moduleCombine(torch.cat([ tensorScoreOne, tensorScoreTwo, tensorScoreThr, tensorScoreFou, tensorScoreFiv ], 1))
#return self.moduleCombine(torch.cat([ tensorScoreOne, tensorScoreTwo, tensorScoreThr, tensorScoreOne, tensorScoreTwo ], 1))
#return torch.sigmoid(tensorScoreOne),torch.sigmoid(tensorScoreTwo),torch.sigmoid(tensorScoreThr),torch.sigmoid(tensorScoreFou),torch.sigmoid(tensorScoreFiv),self.moduleCombine(torch.cat([ tensorScoreOne, tensorScoreTwo, tensorScoreThr, tensorScoreFou, tensorScoreFiv ], 1))
#return torch.sigmoid(tensorScoreTwo)
def define_HED(init_weights_, gpu_ids_=[]):
net = HED()
if len(gpu_ids_) > 0:
assert(torch.cuda.is_available())
net.to(gpu_ids_[0])
net = torch.nn.DataParallel(net, gpu_ids_) # multi-GPUs
if not init_weights_ == None:
device = torch.device('cuda:{}'.format(gpu_ids_[0])) if gpu_ids_ else torch.device('cpu')
print('Loading model from: %s'%init_weights_)
state_dict = torch.load(init_weights_, map_location=str(device))
if isinstance(net, torch.nn.DataParallel):
net.module.load_state_dict(state_dict)
else:
net.load_state_dict(state_dict)
print('load the weights successfully')
return net
def define_styletps(init_weights_, gpu_ids_=[],shape=False):
net = None
if shape == False:
net = triplet()
if len(gpu_ids_) > 0:
assert(torch.cuda.is_available())
net.to(gpu_ids_[0])
net = torch.nn.DataParallel(net, gpu_ids_) # multi-GPUs
if not init_weights_ == None:
device = torch.device('cuda:{}'.format(gpu_ids_[0])) if gpu_ids_ else torch.device('cpu')
print('Loading model from: %s'%init_weights_)
state_dict = torch.load(init_weights_, map_location=str(device))
if isinstance(net, torch.nn.DataParallel):
net.module.load_state_dict(state_dict)
else:
net.load_state_dict(state_dict)
print('load the weights successfully')
return net
class triplet(nn.Module):
def __init__(self): #mnblk=4
super(triplet, self).__init__()
# self.channels = nch_in
self.nch_in = 1
self.nch_out = 1
self.nch_ker = 64
self.norm = 'bnorm'
#self.nblk = nblk
if self.norm == 'bnorm':
self.bias = False
else:
self.bias = True
self.conv0 = CNR2d(self.nch_in, self.nch_ker, kernel_size=7, stride=1, padding=3, norm=self.norm, relu=0.0)
self.conv1 = CNR2d(self.nch_ker, 2 * self.nch_ker, kernel_size=4, stride=2, padding=1, norm=self.norm, relu=0.0)
self.conv2 = CNR2d(2 * self.nch_ker, 4 * self.nch_ker, kernel_size=4, stride=2, padding=1, norm=self.norm, relu=0.0)
self.final_pool = nn.AdaptiveAvgPool2d((1,1))
self.linear = nn.Linear(256, 128)
def forward(self,x,y,z):
x = self.conv0(x)
x = self.conv1(x)
x = self.conv2(x)
x = self.final_pool(x)
x = torch.flatten(x,1)
x = self.linear(x)
y = self.conv0(y)
y = self.conv1(y)
y = self.conv2(y)
y = self.final_pool(y)
y = torch.flatten(y,1)
y = self.linear(y)
z = self.conv0(z)
z = self.conv1(z)
z = self.conv2(z)
z = self.final_pool(z)
z = torch.flatten(z,1)
z = self.linear(z)
return x,y,z
class MLP(nn.Module):
def __init__(self, input_dim, output_dim, dim, n_blk, norm='none', activ='relu'):
super(MLP, self).__init__()
self.model = []
self.model += [LinearBlock(input_dim, dim, norm=norm, activation=activ)]
for i in range(n_blk - 2):
self.model += [LinearBlock(dim, dim, norm=norm, activation=activ)]
self.model += [LinearBlock(dim, output_dim, norm='none', activation='none')] # no output activations
self.model = nn.Sequential(*self.model)
def forward(self, x):
return self.model(x.view(x.size(0), -1))
class ref_unpair(nn.Module):
def __init__(self, nch_in, nch_out, nch_ker=64, norm='bnorm', nblk=4, status='ref_unpair'):
super(ref_unpair, self).__init__()
nch_ker=64
#self.channels = nch_in
self.nch_in = nch_in
self.nchs_in = 1
self.status = status
if self.status == 'ref_unpair_recon':
self.nch_out = 3
self.nch_in = 1
else:
self.nch_out = 1
self.nch_ker = nch_ker
self.norm = norm
self.nblk = nblk
self.dec0 = []
if status == 'ref_unpair_cbam_cat':
self.cbam_c = CBAM(nch_ker*8,16,3,cbam_status="channel")
self.cbam_s = CBAM(nch_ker*8,16,3,cbam_status="spatial")
self.enc1_s = CNR2d(self.nchs_in, self.nch_ker, kernel_size=7, stride=1, padding=3, norm=self.norm, relu=0.0)
self.enc2_s = CNR2d(self.nch_ker, 2 * self.nch_ker, kernel_size=4, stride=2, padding=1, norm=self.norm, relu=0.0)
self.enc3_s = CNR2d(2 * self.nch_ker, 4 * self.nch_ker, kernel_size=4, stride=2, padding=1, norm=self.norm, relu=0.0)
self.enc4_s = CNR2d(4 * self.nch_ker, 8 * self.nch_ker, kernel_size=4, stride=2, padding=1, norm=self.norm, relu=0.0)
if norm == 'bnorm':
self.bias = False
else:
self.bias = True
self.enc1_c = CNR2d(self.nch_in, self.nch_ker, kernel_size=7, stride=1, padding=3, norm=self.norm, relu=0.0)
self.enc2_c = CNR2d(self.nch_ker, 2 * self.nch_ker, kernel_size=4, stride=2, padding=1, norm=self.norm, relu=0.0)
self.enc3_c = CNR2d(2 * self.nch_ker, 4 * self.nch_ker, kernel_size=4, stride=2, padding=1, norm=self.norm, relu=0.0)
self.enc4_c = CNR2d(4 * self.nch_ker, 8 * self.nch_ker, kernel_size=4, stride=2, padding=1, norm=self.norm, relu=0.0)
if status == 'ref_unpair_cbam_cat':
self.res_cat1 = ResBlock_cat(8 * self.nch_ker, 8 * self.nch_ker, kernel_size=3, stride=1, padding=1, norm=self.norm, relu=0.0, padding_mode='reflection')
self.res_cat2 = ResBlock_cat(8 * self.nch_ker, 8 * self.nch_ker, kernel_size=3, stride=1, padding=1, norm=self.norm, relu=0.0, padding_mode='reflection')
self.res_cat3 = ResBlock_cat(8 * self.nch_ker, 8 * self.nch_ker, kernel_size=3, stride=1, padding=1, norm=self.norm, relu=0.0, padding_mode='reflection')
self.res_cat4 = ResBlock_cat(8 * self.nch_ker, 8 * self.nch_ker, kernel_size=3, stride=1, padding=1, norm=self.norm, relu=0.0, padding_mode='reflection')
if self.nblk and status !='ref_unpair_cbam_cat':
res = []
for i in range(self.nblk):
res += [ResBlock(8 * self.nch_ker, 8 * self.nch_ker, kernel_size=3, stride=1, padding=1, norm=self.norm, relu=0.0, padding_mode='reflection')]
self.res1 = nn.Sequential(*res)
#self.dec0 += [DECNR2d(16 * self.nch_ker, 8 * self.nch_ker, kernel_size=4, stride=2, padding=1, norm=self.norm, relu=0.0)]
self.dec0 += [DECNR2d(8 * self.nch_ker, 4 * self.nch_ker, kernel_size=4, stride=2, padding=1, norm=self.norm, relu=0.0)]
self.dec0 += [DECNR2d(4 * self.nch_ker, 2 * self.nch_ker, kernel_size=4, stride=2, padding=1, norm=self.norm, relu=0.0)]
self.dec0 += [DECNR2d(2 * self.nch_ker, 1 * self.nch_ker, kernel_size=4, stride=2, padding=1, norm=self.norm, relu=0.0)]
self.dec0 += [DECNR2d(1 * self.nch_ker, 1 * self.nch_ker, kernel_size=7, stride=1, padding=3, norm=self.norm, relu=0.0)]
self.dec0 += [nn.Conv2d(1 * self.nch_ker, self.nch_out, kernel_size=3, stride=1, padding=1)]
self.dec = nn.Sequential(*self.dec0)
def forward(self, content,style):
content_cs = self.enc1_c(content)
content_cs = self.enc2_c(content_cs)
content_cs = self.enc3_c(content_cs)
content_cs = self.enc4_c(content_cs)
#content_cs = self.enc5_c(content_cs)
if self.status == 'ref_unpair_cbam_cat':
cbam_content_cs = self.cbam_s(content_cs)
sp_content_cs = content_cs + cbam_content_cs
style_cs = self.enc1_s(style)
style_cs = self.enc2_s(style_cs)
style_cs = self.enc3_s(style_cs)
style_cs = self.enc4_s(style_cs)
cbam_style_cs = self.cbam_c(style_cs)
ch_style_cs = style_cs + cbam_style_cs
content_output =self.adaptive_instance_normalization(content_cs ,style_cs)
cbam_content_output =self.adaptive_instance_normalization(sp_content_cs ,ch_style_cs)
content_output = self.res_cat1(content_output,cbam_content_output)
content_output = self.res_cat2(content_output,cbam_content_output)
content_output = self.res_cat3(content_output,cbam_content_output)
content_output = self.res_cat4(content_output,cbam_content_output)
else:
content_output = content_cs
if self.nblk and self.status !='ref_unpair_cbam_cat':
content_cs = self.res1(content_output)
content_output = self.dec(content_output)
content_output = torch.tanh(content_output)
return content_output
def calc_mean_std(self, feat, eps=1e-5):
# eps is a small value added to the variance to avoid divide-by-zero.
size = feat.size()
assert (len(size) == 4)
N, C = size[:2]
feat_var = feat.view(N, C, -1).var(dim=2) + eps
feat_std = feat_var.sqrt().view(N, C, 1, 1)
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
return feat_mean, feat_std
def adaptive_instance_normalization(self, content_feat, style_feat):
assert (content_feat.size()[:2] == style_feat.size()[:2])
size = content_feat.size()
style_mean, style_std = self.calc_mean_std(style_feat)
content_mean, content_std = self.calc_mean_std(content_feat)
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
def define_D(input_nc, ndf, netD, n_layers_D=3, norm='batch', init_type='normal', init_gain=0.02, gpu_ids=[]):
net = None
norm_layer = get_norm_layer(norm_type=norm)
if netD == 'basic': # default PatchGAN classifier
net = NLayerDiscriminator(input_nc, ndf, n_layers=3, norm_layer=norm_layer)
elif netD == 'n_layers': # more options
net = NLayerDiscriminator(input_nc, ndf, n_layers_D, norm_layer=norm_layer)
elif netD == 'pixel': # classify if each pixel is real or fake
net = PixelDiscriminator(input_nc, ndf, norm_layer=norm_layer)
else:
raise NotImplementedError('Discriminator model name [%s] is not recognized' % netD)
return init_net(net, init_type, init_gain, gpu_ids)
##############################################################################
# Classes
##############################################################################
class GANLoss(nn.Module):
"""Define different GAN objectives.
The GANLoss class abstracts away the need to create the target label tensor
that has the same size as the input.
"""
def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0):
""" Initialize the GANLoss class.
Parameters:
gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp.
target_real_label (bool) - - label for a real image
target_fake_label (bool) - - label of a fake image
Note: Do not use sigmoid as the last layer of Discriminator.
LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss.
"""
super(GANLoss, self).__init__()
self.register_buffer('real_label', torch.tensor(target_real_label))
self.register_buffer('fake_label', torch.tensor(target_fake_label))
self.gan_mode = gan_mode
if gan_mode == 'lsgan':
self.loss = nn.MSELoss()
elif gan_mode == 'vanilla':
self.loss = nn.BCEWithLogitsLoss()
elif gan_mode in ['wgangp']:
self.loss = None
else:
raise NotImplementedError('gan mode %s not implemented' % gan_mode)
def get_target_tensor(self, prediction, target_is_real):
if target_is_real:
target_tensor = self.real_label
else:
target_tensor = self.fake_label
return target_tensor.expand_as(prediction)
def __call__(self, prediction, target_is_real):
if self.gan_mode in ['lsgan', 'vanilla']:
target_tensor = self.get_target_tensor(prediction, target_is_real)
loss = self.loss(prediction, target_tensor)
elif self.gan_mode == 'wgangp':
if target_is_real:
loss = -prediction.mean()
else:
loss = prediction.mean()
return loss
def cal_gradient_penalty(netD, real_data, fake_data, device, type='mixed', constant=1.0, lambda_gp=10.0):
if lambda_gp > 0.0:
if type == 'real': # either use real images, fake images, or a linear interpolation of two.
interpolatesv = real_data
elif type == 'fake':
interpolatesv = fake_data
elif type == 'mixed':
alpha = torch.rand(real_data.shape[0], 1, device=device)
alpha = alpha.expand(real_data.shape[0], real_data.nelement() // real_data.shape[0]).contiguous().view(*real_data.shape)
interpolatesv = alpha * real_data + ((1 - alpha) * fake_data)
else:
raise NotImplementedError('{} not implemented'.format(type))
interpolatesv.requires_grad_(True)
disc_interpolates = netD(interpolatesv)
gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolatesv,
grad_outputs=torch.ones(disc_interpolates.size()).to(device),
create_graph=True, retain_graph=True, only_inputs=True)
gradients = gradients[0].view(real_data.size(0), -1) # flat the data
gradient_penalty = (((gradients + 1e-16).norm(2, dim=1) - constant) ** 2).mean() * lambda_gp # added eps
return gradient_penalty, gradients
else:
return 0.0, None
class NLayerDiscriminator(nn.Module):
"""Defines a PatchGAN discriminator"""
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d):
"""Construct a PatchGAN discriminator
Parameters:
input_nc (int) -- the number of channels in input images
ndf (int) -- the number of filters in the last conv layer
n_layers (int) -- the number of conv layers in the discriminator
norm_layer -- normalization layer
"""
super(NLayerDiscriminator, self).__init__()
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
kw = 4
padw = 1
sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
nf_mult = 1
nf_mult_prev = 1
for n in range(1, n_layers): # gradually increase the number of filters
nf_mult_prev = nf_mult
nf_mult = min(2 ** n, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
norm_layer(ndf * nf_mult),
nn.LeakyReLU(0.2, True)
]
nf_mult_prev = nf_mult
nf_mult = min(2 ** n_layers, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
norm_layer(ndf * nf_mult),
nn.LeakyReLU(0.2, True)
]
sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map
self.model = nn.Sequential(*sequence)
def forward(self, input):
"""Standard forward."""
return self.model(input)
class PixelDiscriminator(nn.Module):
"""Defines a 1x1 PatchGAN discriminator (pixelGAN)"""
def __init__(self, input_nc, ndf=64, norm_layer=nn.BatchNorm2d):
"""Construct a 1x1 PatchGAN discriminator
Parameters:
input_nc (int) -- the number of channels in input images
ndf (int) -- the number of filters in the last conv layer
norm_layer -- normalization layer
"""
super(PixelDiscriminator, self).__init__()
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
self.net = [
nn.Conv2d(input_nc, ndf, kernel_size=1, stride=1, padding=0),
nn.LeakyReLU(0.2, True),
nn.Conv2d(ndf, ndf * 2, kernel_size=1, stride=1, padding=0, bias=use_bias),
norm_layer(ndf * 2),
nn.LeakyReLU(0.2, True),
nn.Conv2d(ndf * 2, 1, kernel_size=1, stride=1, padding=0, bias=use_bias)]
self.net = nn.Sequential(*self.net)
def forward(self, input):
"""Standard forward."""
return self.net(input)
import math
class CBAM(nn.Module):
def __init__(self, n_channels_in, reduction_ratio, kernel_size,cbam_status):
super(CBAM, self).__init__()
self.n_channels_in = n_channels_in
self.reduction_ratio = reduction_ratio
self.kernel_size = kernel_size
self.channel_attention = ChannelAttention_nopara(n_channels_in, reduction_ratio)
self.spatial_attention = SpatialAttention_nopara(kernel_size)
self.status = cbam_status
def forward(self, x):
## We don't use cbam in this version
if self.status == "cbam":
chan_att = self.channel_attention(x)
fp = chan_att * x
spat_att = self.spatial_attention(fp)
fpp = spat_att * fp
if self.status == "spatial":
spat_att = self.spatial_attention(x) #* s_para_1d
fpp = spat_att * x
if self.status == "channel":
chan_att = self.channel_attention(x) #* c_para_1d
fpp = chan_att * x
return fpp #,c_wgt,s_wgt
class SpatialAttention_nopara(nn.Module):
def __init__(self, kernel_size):
super(SpatialAttention_nopara, self).__init__()
self.kernel_size = kernel_size
assert kernel_size % 2 == 1, "Odd kernel size required"
self.conv = nn.Conv2d(in_channels = 2, out_channels = 1, kernel_size = kernel_size, padding= int((kernel_size-1)/2))
def forward(self, x):
max_pool = self.agg_channel(x, "max")
avg_pool = self.agg_channel(x, "avg")
pool = torch.cat([max_pool, avg_pool], dim = 1)
conv = self.conv(pool)
conv = conv.repeat(1,x.size()[1],1,1)
att = torch.sigmoid(conv)
return att
def agg_channel(self, x, pool = "max"):
b,c,h,w = x.size()
x = x.view(b, c, h*w)
x = x.permute(0,2,1)
if pool == "max":
x = F.max_pool1d(x,c)
elif pool == "avg":
x = F.avg_pool1d(x,c)
x = x.permute(0,2,1)
x = x.view(b,1,h,w)
return x
class ChannelAttention_nopara(nn.Module):
def __init__(self, n_channels_in, reduction_ratio):
super(ChannelAttention_nopara, self).__init__()
self.n_channels_in = n_channels_in
self.reduction_ratio = reduction_ratio
self.middle_layer_size = int(self.n_channels_in/ float(self.reduction_ratio))
self.bottleneck = nn.Sequential(
nn.Linear(self.n_channels_in, self.middle_layer_size),
nn.ReLU(),
nn.Linear(self.middle_layer_size, self.n_channels_in)
)
def forward(self, x):
kernel = (x.size()[2], x.size()[3])
avg_pool = F.avg_pool2d(x, kernel )
max_pool = F.max_pool2d(x, kernel)
avg_pool = avg_pool.view(avg_pool.size()[0], -1)
max_pool = max_pool.view(max_pool.size()[0], -1)
avg_pool_bck = self.bottleneck(avg_pool)
max_pool_bck = self.bottleneck(max_pool)
pool_sum = avg_pool_bck + max_pool_bck
sig_pool = torch.sigmoid(pool_sum)
sig_pool = sig_pool.unsqueeze(2).unsqueeze(3)
#out = sig_pool.repeat(1,1,kernel[0], kernel[1])
return sig_pool
|