--- license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer model-index: - name: xlm-roberta-base_latin_kin-amh-eng_train_loss results: [] --- # xlm-roberta-base_latin_kin-amh-eng_train_loss This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0326 - Spearman Corr: 0.7395 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Spearman Corr | |:-------------:|:-----:|:----:|:---------------:|:-------------:| | No log | 0.59 | 200 | 0.0303 | 0.6125 | | No log | 1.17 | 400 | 0.0269 | 0.6780 | | No log | 1.76 | 600 | 0.0393 | 0.6855 | | 0.036 | 2.35 | 800 | 0.0338 | 0.7111 | | 0.036 | 2.93 | 1000 | 0.0303 | 0.6886 | | 0.036 | 3.52 | 1200 | 0.0327 | 0.7025 | | 0.0243 | 4.11 | 1400 | 0.0269 | 0.7220 | | 0.0243 | 4.69 | 1600 | 0.0287 | 0.7246 | | 0.0243 | 5.28 | 1800 | 0.0260 | 0.7336 | | 0.0243 | 5.87 | 2000 | 0.0266 | 0.7234 | | 0.0185 | 6.45 | 2200 | 0.0252 | 0.7347 | | 0.0185 | 7.04 | 2400 | 0.0281 | 0.7276 | | 0.0185 | 7.62 | 2600 | 0.0294 | 0.7298 | | 0.0141 | 8.21 | 2800 | 0.0274 | 0.7219 | | 0.0141 | 8.8 | 3000 | 0.0285 | 0.7260 | | 0.0141 | 9.38 | 3200 | 0.0276 | 0.7315 | | 0.0141 | 9.97 | 3400 | 0.0291 | 0.7329 | | 0.0109 | 10.56 | 3600 | 0.0310 | 0.7339 | | 0.0109 | 11.14 | 3800 | 0.0326 | 0.7395 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2