--- language: en license: mit library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - task-oriented-dialogues - dialog-flow datasets: - sergioburdisso/dialog2flow-dataset - Salesforce/dialogstudio pipeline_tag: sentence-similarity base_model: - aws-ai/dse-bert-base --- # Dialog2Flow joint target (DSE-base) This a variation of the **D2F$_{joint}$** model introduced in the paper ["Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction"](https://arxiv.org/abs/2410.18481) published in the EMNLP 2024 main conference. This version uses DSE-base as the backbone model which yields to an increase in performance as compared to the vanilla version using BERT-base as the backbone (results reported in Appendix C). Implementation-wise, this is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["your phone please", "okay may i have your telephone number please"] model = SentenceTransformer('sergioburdisso/dialog2flow-joint-dse-base') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['your phone please', 'okay may i have your telephone number please'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sergioburdisso/dialog2flow-joint-dse-base') model = AutoModel.from_pretrained('sergioburdisso/dialog2flow-joint-dse-base') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 363506 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `spretrainer.losses.LabeledContrastiveLoss.LabeledContrastiveLoss` **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 49478 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `spretrainer.losses.LabeledContrastiveLoss.LabeledContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 15, "evaluation_steps": 164, "evaluator": [ "spretrainer.evaluation.FewShotClassificationEvaluator.FewShotClassificationEvaluator" ], "max_grad_norm": 1, "optimizer_class": "", "optimizer_params": { "lr": 3e-06 }, "scheduler": "WarmupLinear", "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citation ```bibtex @inproceedings{burdisso-etal-2024-dialog2flow, title = "Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction", author = "Burdisso, Sergio and Madikeri, Srikanth and Motlicek, Petr", booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2024", address = "Miami", publisher = "Association for Computational Linguistics", } ``` ## License Copyright (c) 2024 [Idiap Research Institute](https://www.idiap.ch/). MIT License.