--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: [] metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: BAAI/bge-small-en-v1.5 --- # SetFit with BAAI/bge-small-en-v1.5 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model has been fine-tuned for the classification of daily notes. It is a multiclass classifier capable of categorizing text inputs into six distinct classes: - **Cita** (Appointment) - **Comprar** (Shopping) - **Trabajo** (Work) - **Recordatorio** (Reminder) - **Estudios** (Studies) - **Hogar** (Home) **Note:** While the model has been fine-tuned specifically for the Spanish language, it also performs well with notes written in English. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 6 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("sergifusterdura/dailynoteclassifier-setfit-v1.5-16-shot") # Run inference preds = model("Tengo que ir a comprar fruta esta tarde.") ``` ## Training Details ### Framework Versions - Python: 3.11.5 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.46.3 - PyTorch: 2.5.1+cpu - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```