---
base_model: prajjwal1/bert-tiny
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:277277
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Tall man being stopped by an officer.
sentences:
- The man is short.
- There is a tall man.
- Male in brown leather jacket and tight black slacks, looking down at his phone
- source_sentence: Man relaxing on a bench at the bus stop.
sentences:
- The man stood next to the bench.
- The man relaxes on a bench.
- A dog running outside.
- source_sentence: Police officer with riot shield stands in front of crowd.
sentences:
- A police officer teaches two children something.
- The kid is at the beach.
- A police officer stands in front of a crowd.
- source_sentence: A woman in a red shirt and blue jeans is walking outside while
a man in a khaki jacket is right behind her.
sentences:
- A man and a woman are walking outside.
- A woman is outside.
- A man in an army jacket is following a woman in a pink dress.
- source_sentence: A waitress with a pink shirt and black pants walking through a
restaurant carrying bowls of soup.
sentences:
- Nobody has pants
- A person with pants
- a young kid jumps into the water
co2_eq_emissions:
emissions: 1.9590621986924506
energy_consumed: 0.005040010596015587
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.029
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on prajjwal1/bert-tiny
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.7526013757467193
name: Pearson Cosine
- type: spearman_cosine
value: 0.7614153421868329
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7622035611835871
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7597498090089608
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7632410201154781
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7614153421868329
name: Spearman Euclidean
- type: pearson_dot
value: 0.7526013835604672
name: Pearson Dot
- type: spearman_dot
value: 0.7614153421868329
name: Spearman Dot
- type: pearson_max
value: 0.7632410201154781
name: Pearson Max
- type: spearman_max
value: 0.7614153421868329
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.69132863091579
name: Pearson Cosine
- type: spearman_cosine
value: 0.6775246001958918
name: Spearman Cosine
- type: pearson_manhattan
value: 0.6993315331718462
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6760860789893309
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7005700491110102
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6775246001958918
name: Spearman Euclidean
- type: pearson_dot
value: 0.6913286275793098
name: Pearson Dot
- type: spearman_dot
value: 0.6775246001958918
name: Spearman Dot
- type: pearson_max
value: 0.7005700491110102
name: Pearson Max
- type: spearman_max
value: 0.6775246001958918
name: Spearman Max
---
# SentenceTransformer based on prajjwal1/bert-tiny
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny). It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny)
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 256 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 128, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 128, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence-transformers-testing/all-nli-bert-tiny-dense")
# Run inference
sentences = [
'A waitress with a pink shirt and black pants walking through a restaurant carrying bowls of soup.',
'A person with pants',
'Nobody has pants',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 256]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7526 |
| **spearman_cosine** | **0.7614** |
| pearson_manhattan | 0.7622 |
| spearman_manhattan | 0.7597 |
| pearson_euclidean | 0.7632 |
| spearman_euclidean | 0.7614 |
| pearson_dot | 0.7526 |
| spearman_dot | 0.7614 |
| pearson_max | 0.7632 |
| spearman_max | 0.7614 |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.6913 |
| **spearman_cosine** | **0.6775** |
| pearson_manhattan | 0.6993 |
| spearman_manhattan | 0.6761 |
| pearson_euclidean | 0.7006 |
| spearman_euclidean | 0.6775 |
| pearson_dot | 0.6913 |
| spearman_dot | 0.6775 |
| pearson_max | 0.7006 |
| spearman_max | 0.6775 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 277,277 training samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details |
A person on a horse jumps over a broken down airplane.
| A person is outdoors, on a horse.
| A person is at a diner, ordering an omelette.
|
| Children smiling and waving at camera
| There are children present
| The kids are frowning
|
| A boy is jumping on skateboard in the middle of a red bridge.
| The boy does a skateboarding trick.
| The boy skates down the sidewalk.
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 5,875 evaluation samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | Two women are embracing while holding to go packages.
| Two woman are holding packages.
| The men are fighting outside a deli.
|
| Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
| Two kids in numbered jerseys wash their hands.
| Two kids in jackets walk to school.
|
| A man selling donuts to a customer during a world exhibition event held in the city of Angeles
| A man selling donuts to a customer.
| A woman drinks her coffee in a small cafe.
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `bf16`: True
#### All Hyperparameters