--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: facebook/deit-base-patch16-224 datasets: - medmnist-v2 metrics: - accuracy - precision - recall - f1 model-index: - name: breastmnist-deit-base-finetuned results: [] --- # breastmnist-deit-base-finetuned This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the medmnist-v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3454 - Accuracy: 0.8718 - Precision: 0.8698 - Recall: 0.7920 - F1: 0.8194 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 0.9143 | 8 | 0.5026 | 0.7436 | 0.8701 | 0.5238 | 0.4708 | | 0.6168 | 1.9429 | 17 | 0.4762 | 0.8462 | 0.8286 | 0.7594 | 0.7833 | | 0.5954 | 2.9714 | 26 | 0.5305 | 0.7308 | 0.3654 | 0.5 | 0.4222 | | 0.5934 | 4.0 | 35 | 0.4790 | 0.7692 | 0.7836 | 0.5865 | 0.5846 | | 0.526 | 4.9143 | 43 | 0.3693 | 0.8718 | 0.8698 | 0.7920 | 0.8194 | | 0.4651 | 5.9429 | 52 | 0.4789 | 0.7949 | 0.7434 | 0.7694 | 0.7534 | | 0.493 | 6.9714 | 61 | 0.4187 | 0.8205 | 0.7792 | 0.7419 | 0.7565 | | 0.4337 | 8.0 | 70 | 0.3600 | 0.8590 | 0.8417 | 0.7832 | 0.8051 | | 0.4337 | 8.9143 | 78 | 0.3468 | 0.8718 | 0.8544 | 0.8070 | 0.8260 | | 0.418 | 9.1429 | 80 | 0.3454 | 0.8718 | 0.8698 | 0.7920 | 0.8194 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1