--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - classification - generated_from_trainer metrics: - accuracy model-index: - name: clasificador-twits-odio results: [] --- # clasificador-twits-odio This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7582 - Accuracy: 0.5512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4563 | 1.0 | 1125 | 1.3258 | 0.4973 | | 0.318 | 2.0 | 2250 | 2.1834 | 0.4929 | | 0.1436 | 3.0 | 3375 | 2.7582 | 0.5512 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0