--- language: - ko license: apache-2.0 tags: - hf-asr-leaderboard - whisper-event - generated_from_trainer datasets: - kresnik/zeroth_korean metrics: - wer model-index: - name: Whisper Medium Korean results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Zeroth Korean type: kresnik/zeroth_korean config: clean split: test args: 'split: test' metrics: - type: wer value: 3.6440295136274656 name: Test Wer --- # Whisper Medium Korean This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Zeroth Korean dataset. It achieves the following results on the evaluation set: - Loss: 0.0727 - Wer: 3.6440 - Cer: 1.4840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.0873 | 0.72 | 1000 | 0.1086 | 7.7549 | 2.5597 | | 0.0258 | 1.44 | 2000 | 0.0805 | 4.5475 | 1.7588 | | 0.0091 | 2.16 | 3000 | 0.0719 | 3.7946 | 1.5664 | | 0.0086 | 2.88 | 4000 | 0.0704 | 3.5537 | 1.5232 | | 0.0019 | 3.59 | 5000 | 0.0727 | 3.6440 | 1.4840 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0a0+d0d6b1f - Datasets 2.7.1 - Tokenizers 0.13.2