|
from __future__ import annotations |
|
|
|
import importlib |
|
import logging |
|
import os |
|
from typing import TYPE_CHECKING |
|
from urllib.parse import urlparse |
|
|
|
import torch |
|
|
|
from modules import shared |
|
from modules.upscaler import Upscaler, UpscalerLanczos, UpscalerNearest, UpscalerNone |
|
|
|
if TYPE_CHECKING: |
|
import spandrel |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def load_file_from_url( |
|
url: str, |
|
*, |
|
model_dir: str, |
|
progress: bool = True, |
|
file_name: str | None = None, |
|
) -> str: |
|
"""Download a file from `url` into `model_dir`, using the file present if possible. |
|
|
|
Returns the path to the downloaded file. |
|
""" |
|
os.makedirs(model_dir, exist_ok=True) |
|
if not file_name: |
|
parts = urlparse(url) |
|
file_name = os.path.basename(parts.path) |
|
cached_file = os.path.abspath(os.path.join(model_dir, file_name)) |
|
if not os.path.exists(cached_file): |
|
print(f'Downloading: "{url}" to {cached_file}\n') |
|
from torch.hub import download_url_to_file |
|
download_url_to_file(url, cached_file, progress=progress) |
|
return cached_file |
|
|
|
|
|
def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None, ext_blacklist=None) -> list: |
|
""" |
|
A one-and done loader to try finding the desired models in specified directories. |
|
|
|
@param download_name: Specify to download from model_url immediately. |
|
@param model_url: If no other models are found, this will be downloaded on upscale. |
|
@param model_path: The location to store/find models in. |
|
@param command_path: A command-line argument to search for models in first. |
|
@param ext_filter: An optional list of filename extensions to filter by |
|
@return: A list of paths containing the desired model(s) |
|
""" |
|
output = [] |
|
|
|
try: |
|
places = [] |
|
|
|
if command_path is not None and command_path != model_path: |
|
pretrained_path = os.path.join(command_path, 'experiments/pretrained_models') |
|
if os.path.exists(pretrained_path): |
|
print(f"Appending path: {pretrained_path}") |
|
places.append(pretrained_path) |
|
elif os.path.exists(command_path): |
|
places.append(command_path) |
|
|
|
places.append(model_path) |
|
|
|
for place in places: |
|
for full_path in shared.walk_files(place, allowed_extensions=ext_filter): |
|
if os.path.islink(full_path) and not os.path.exists(full_path): |
|
print(f"Skipping broken symlink: {full_path}") |
|
continue |
|
if ext_blacklist is not None and any(full_path.endswith(x) for x in ext_blacklist): |
|
continue |
|
if full_path not in output: |
|
output.append(full_path) |
|
|
|
if model_url is not None and len(output) == 0: |
|
if download_name is not None: |
|
output.append(load_file_from_url(model_url, model_dir=places[0], file_name=download_name)) |
|
else: |
|
output.append(model_url) |
|
|
|
except Exception: |
|
pass |
|
|
|
return output |
|
|
|
|
|
def friendly_name(file: str): |
|
if file.startswith("http"): |
|
file = urlparse(file).path |
|
|
|
file = os.path.basename(file) |
|
model_name, extension = os.path.splitext(file) |
|
return model_name |
|
|
|
|
|
def load_upscalers(): |
|
|
|
|
|
modules_dir = os.path.join(shared.script_path, "modules") |
|
for file in os.listdir(modules_dir): |
|
if "_model.py" in file: |
|
model_name = file.replace("_model.py", "") |
|
full_model = f"modules.{model_name}_model" |
|
try: |
|
importlib.import_module(full_model) |
|
except Exception: |
|
pass |
|
|
|
datas = [] |
|
commandline_options = vars(shared.cmd_opts) |
|
|
|
|
|
|
|
|
|
used_classes = {} |
|
for cls in reversed(Upscaler.__subclasses__()): |
|
classname = str(cls) |
|
if classname not in used_classes: |
|
used_classes[classname] = cls |
|
|
|
for cls in reversed(used_classes.values()): |
|
name = cls.__name__ |
|
cmd_name = f"{name.lower().replace('upscaler', '')}_models_path" |
|
commandline_model_path = commandline_options.get(cmd_name, None) |
|
scaler = cls(commandline_model_path) |
|
scaler.user_path = commandline_model_path |
|
scaler.model_download_path = commandline_model_path or scaler.model_path |
|
datas += scaler.scalers |
|
|
|
shared.sd_upscalers = sorted( |
|
datas, |
|
|
|
key=lambda x: x.name.lower() if not isinstance(x.scaler, (UpscalerNone, UpscalerLanczos, UpscalerNearest)) else "" |
|
) |
|
|
|
|
|
def load_spandrel_model( |
|
path: str | os.PathLike, |
|
*, |
|
device: str | torch.device | None, |
|
prefer_half: bool = False, |
|
dtype: str | torch.dtype | None = None, |
|
expected_architecture: str | None = None, |
|
) -> spandrel.ModelDescriptor: |
|
import spandrel |
|
model_descriptor = spandrel.ModelLoader(device=device).load_from_file(str(path)) |
|
if expected_architecture and model_descriptor.architecture != expected_architecture: |
|
logger.warning( |
|
f"Model {path!r} is not a {expected_architecture!r} model (got {model_descriptor.architecture!r})", |
|
) |
|
half = False |
|
if prefer_half: |
|
if model_descriptor.supports_half: |
|
model_descriptor.model.half() |
|
half = True |
|
else: |
|
logger.info("Model %s does not support half precision, ignoring --half", path) |
|
if dtype: |
|
model_descriptor.model.to(dtype=dtype) |
|
model_descriptor.model.eval() |
|
logger.debug( |
|
"Loaded %s from %s (device=%s, half=%s, dtype=%s)", |
|
model_descriptor, path, device, half, dtype, |
|
) |
|
return model_descriptor |
|
|