|
import logging |
|
import sys |
|
|
|
import torch |
|
from PIL import Image |
|
|
|
from modules import devices, modelloader, script_callbacks, shared, upscaler_utils |
|
from modules.upscaler import Upscaler, UpscalerData |
|
|
|
SWINIR_MODEL_URL = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN.pth" |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class UpscalerSwinIR(Upscaler): |
|
def __init__(self, dirname): |
|
self._cached_model = None |
|
self._cached_model_config = None |
|
self.name = "SwinIR" |
|
self.model_url = SWINIR_MODEL_URL |
|
self.model_name = "SwinIR 4x" |
|
self.user_path = dirname |
|
super().__init__() |
|
scalers = [] |
|
model_files = self.find_models(ext_filter=[".pt", ".pth"]) |
|
for model in model_files: |
|
if model.startswith("http"): |
|
name = self.model_name |
|
else: |
|
name = modelloader.friendly_name(model) |
|
model_data = UpscalerData(name, model, self) |
|
scalers.append(model_data) |
|
self.scalers = scalers |
|
|
|
def do_upscale(self, img: Image.Image, model_file: str) -> Image.Image: |
|
current_config = (model_file, shared.opts.SWIN_tile) |
|
|
|
if self._cached_model_config == current_config: |
|
model = self._cached_model |
|
else: |
|
try: |
|
model = self.load_model(model_file) |
|
except Exception as e: |
|
print(f"Failed loading SwinIR model {model_file}: {e}", file=sys.stderr) |
|
return img |
|
self._cached_model = model |
|
self._cached_model_config = current_config |
|
|
|
img = upscaler_utils.upscale_2( |
|
img, |
|
model, |
|
tile_size=shared.opts.SWIN_tile, |
|
tile_overlap=shared.opts.SWIN_tile_overlap, |
|
scale=model.scale, |
|
desc="SwinIR", |
|
) |
|
devices.torch_gc() |
|
return img |
|
|
|
def load_model(self, path, scale=4): |
|
if path.startswith("http"): |
|
filename = modelloader.load_file_from_url( |
|
url=path, |
|
model_dir=self.model_download_path, |
|
file_name=f"{self.model_name.replace(' ', '_')}.pth", |
|
) |
|
else: |
|
filename = path |
|
|
|
model_descriptor = modelloader.load_spandrel_model( |
|
filename, |
|
device=self._get_device(), |
|
prefer_half=(devices.dtype == torch.float16), |
|
expected_architecture="SwinIR", |
|
) |
|
if getattr(shared.opts, 'SWIN_torch_compile', False): |
|
try: |
|
model_descriptor.model.compile() |
|
except Exception: |
|
logger.warning("Failed to compile SwinIR model, fallback to JIT", exc_info=True) |
|
return model_descriptor |
|
|
|
def _get_device(self): |
|
return devices.get_device_for('swinir') |
|
|
|
|
|
def on_ui_settings(): |
|
import gradio as gr |
|
|
|
shared.opts.add_option("SWIN_tile", shared.OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling"))) |
|
shared.opts.add_option("SWIN_tile_overlap", shared.OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}, section=('upscaling', "Upscaling"))) |
|
shared.opts.add_option("SWIN_torch_compile", shared.OptionInfo(False, "Use torch.compile to accelerate SwinIR.", gr.Checkbox, {"interactive": True}, section=('upscaling', "Upscaling")).info("Takes longer on first run")) |
|
|
|
|
|
script_callbacks.on_ui_settings(on_ui_settings) |
|
|