--- pipeline_tag: text-classification tags: - transformers - information-retrieval language: pl license: gemma ---

polish-reranker-roberta-v2

This is an improved version of reranker based on [sdadas/polish-roberta-large-v2](https://huggingface.co/sdadas/polish-roberta-large-v2) trained with [RankNet loss](https://icml.cc/Conferences/2015/wp-content/uploads/2015/06/icml_ranking.pdf) on a large dataset of text pairs. The model was trained in the same way and on the same data as [sdadas/polish-reranker-large-ranknet](https://huggingface.co/sdadas/polish-reranker-large-ranknet), with the following improvements: - We used predictions from [BAAI/bge-reranker-v2.5-gemma2-lightweight](https://huggingface.co/BAAI/bge-reranker-v2.5-gemma2-lightweight) for distillation instead of [unicamp-dl/mt5-13b-mmarco-100k](https://huggingface.co/unicamp-dl/mt5-13b-mmarco-100k). - We used a custom implementation of the RoBERTa model with support for Flash Attention 2. If you want to use these features, load the model with the arguments `trust_remote_code=True` and `attn_implementation="flash_attention_2"`. Our reranker achieves results close to [BAAI/bge-reranker-v2.5-gemma2-lightweight](https://huggingface.co/BAAI/bge-reranker-v2.5-gemma2-lightweight) on the PIRB benchmark, even outperforming it on some datasets. At the same time, it is over 21 times smaller — 435M vs. 9.24B parameters. ## Usage (Huggingface Transformers) The model can be used with Huggingface Transformers in the following way: ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification import numpy as np query = "Jak dożyć 100 lat?" answers = [ "Trzeba zdrowo się odżywiać i uprawiać sport.", "Trzeba pić alkohol, imprezować i jeździć szybkimi autami.", "Gdy trwała kampania politycy zapewniali, że rozprawią się z zakazem niedzielnego handlu." ] model_name = "sdadas/polish-reranker-roberta-v2" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained( model_name, trust_remote_code=True, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", device_map="cuda" ) texts = [f"{query}{answer}" for answer in answers] tokens = tokenizer(texts, padding="longest", max_length=512, truncation=True, return_tensors="pt").to("cuda") output = model(**tokens) results = output.logits.detach().cpu().float().numpy() results = np.squeeze(results) print(results.tolist()) ``` ## Evaluation Results The model achieves **NDCG@10** of **65.30** in the Rerankers category of the Polish Information Retrieval Benchmark. See [PIRB Leaderboard](https://huggingface.co/spaces/sdadas/pirb) for detailed results. ## Citation ```bibtex @article{dadas2024assessing, title={Assessing generalization capability of text ranking models in Polish}, author={Sławomir Dadas and Małgorzata Grębowiec}, year={2024}, eprint={2402.14318}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```