---
library_name: scvi-tools
license: cc-by-4.0
tags:
- biology
- genomics
- single-cell
- model_cls_name:RNAStereoscope
- scvi_version:1.2.0
- anndata_version:0.11.1
- modality:rna
- tissue:various
- annotated:True
---
Stereoscope is a variational inference model for single-cell RNA-seq data that can learn a
cell-type specific rate of gene expression. The predictions of the model are meant to be afterward
used for deconvolution of a second spatial transcriptomics dataset in Stereoscope. Stereoscope
predicts the cell-type proportions in the spatial data.
Stereoscope takes as input a scRNA-seq gene expression matrix with cells and genes as well as a
cell-type annotation for all cells.
We provide an extensive for DestVI including a description of CondSCVI
[user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/destvi.html).
- See our original manuscript for further details of the model:
[Stereoscope manuscript](https://www.nature.com/articles/s42003-020-01247-y) as well as the
[scvi-tools manuscript](https://www.nature.com/articles/s41587-021-01206-w) about implementation
details.
- See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2)
how to leverage pre-trained models.
# Model Description
Tabula Sapiens is a benchmark, first-draft human cell atlas of nearly 500,000 cells from 24 organs of 15 normal human subjects.
# Metrics
We provide here key performance metrics for the uploaded model, if provided by the data uploader.
Coefficient of variation
The cell-wise coefficient of variation summarizes how well variation between different cells is
preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4
, we would recommend not to use generated data for downstream analysis, while the generated latent
space might still be useful for analysis.
**Cell-wise Coefficient of Variation**:
Not provided by uploader
The gene-wise coefficient of variation summarizes how well variation between different genes is
preserved by the generated model expression. This value is usually quite high.
**Gene-wise Coefficient of Variation**:
Not provided by uploader
Differential expression metric
The differential expression metric provides a summary of the differential expression analysis
between cell types or input clusters. We provide here the F1-score, Pearson Correlation
Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision
Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each
cell-type.
**Differential expression**:
Not provided by uploader
# Model Properties
We provide here key parameters used to setup and train the model.
Model Parameters
These provide the settings to setup the original model:
```json
{}
```
Setup Data Arguments
Arguments passed to setup_anndata of the original model:
```json
{
"labels_key": "cell_ontology_class",
"layer": null
}
```
Data Registry
Registry elements for AnnData manager:
| Registry Key | scvi-tools Location |
|--------------|---------------------------|
| X | adata.X |
| labels | adata.obs['_scvi_labels'] |
- **Data is Minified**: False
Summary Statistics
| Summary Stat Key | Value |
|------------------|-------|
| n_cells | 16037 |
| n_labels | 14 |
| n_vars | 3000 |
Training
**Training data url**: Not provided by uploader
If provided by the original uploader, for those interested in understanding or replicating the
training process, the code is available at the link below.
**Training Code URL**: https://github.com/YosefLab/scvi-hub-models/blob/main/src/scvi_hub_models/TS_train_all_tissues.ipynb
# References
The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, May 2022. doi:10.1126/science.abl4896