--- library_name: stable-baselines3 tags: - HopperBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DDPG results: - metrics: - type: mean_reward value: 852.06 +/- 505.72 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: HopperBulletEnv-v0 type: HopperBulletEnv-v0 --- # **DDPG** Agent playing **HopperBulletEnv-v0** This is a trained model of a **DDPG** agent playing **HopperBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo ddpg --env HopperBulletEnv-v0 -orga sb3 -f logs/ python enjoy.py --algo ddpg --env HopperBulletEnv-v0 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo ddpg --env HopperBulletEnv-v0 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo ddpg --env HopperBulletEnv-v0 -f logs/ -orga sb3 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('buffer_size', 1000000), ('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'), ('gamma', 0.98), ('gradient_steps', 64), ('learning_rate', 0.0007), ('learning_starts', 10000), ('n_timesteps', 1000000.0), ('noise_std', 0.1), ('noise_type', 'normal'), ('policy', 'MlpPolicy'), ('policy_kwargs', 'dict(net_arch=[400, 300])'), ('train_freq', 64), ('normalize', False)]) ```