--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-v3-multids-v3 results: [] --- # whisper-large-v3-multids-v3 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0675 - Wer: 1.7195 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.3186 | 3.0215 | 250 | 0.1316 | 3.0916 | | 0.1075 | 7.0085 | 500 | 0.0966 | 2.3375 | | 0.0834 | 10.03 | 750 | 0.0832 | 2.0758 | | 0.0774 | 14.017 | 1000 | 0.0762 | 1.8596 | | 0.0693 | 18.004 | 1250 | 0.0721 | 1.7943 | | 0.065 | 21.0255 | 1500 | 0.0696 | 1.7406 | | 0.0634 | 25.0125 | 1750 | 0.0681 | 1.7324 | | 0.0612 | 28.034 | 2000 | 0.0675 | 1.7195 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1.dev0 - Tokenizers 0.19.1