--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-ft-imdb-sentiment-classifier results: [] --- # distilbert-base-uncased-ft-imdb-sentiment-classifier This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2956 - Precision: 0.9191 - Recall: 0.8852 - F1: 0.9019 - Accuracy: 0.906 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3177 | 1.0 | 313 | 0.2525 | 0.8918 | 0.9119 | 0.9017 | 0.903 | | 0.1762 | 2.0 | 626 | 0.2694 | 0.9137 | 0.8893 | 0.9013 | 0.905 | | 0.113 | 3.0 | 939 | 0.2956 | 0.9191 | 0.8852 | 0.9019 | 0.906 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1