--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - vision - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-beans_50 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.943939393939394 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans_50 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1514 - Accuracy: 0.9439 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 468 | 0.1514 | 0.9439 | | 0.2863 | 2.0 | 936 | 0.1917 | 0.9303 | | 0.2377 | 3.0 | 1404 | 0.1725 | 0.9333 | | 0.2142 | 4.0 | 1872 | 0.1782 | 0.9288 | | 0.2058 | 5.0 | 2340 | 0.1788 | 0.9273 | | 0.1899 | 6.0 | 2808 | 0.1824 | 0.9318 | | 0.1838 | 7.0 | 3276 | 0.1879 | 0.9333 | | 0.1757 | 8.0 | 3744 | 0.2391 | 0.9333 | | 0.1852 | 9.0 | 4212 | 0.1725 | 0.9409 | | 0.1634 | 10.0 | 4680 | 0.1762 | 0.9394 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.14.1