{ "policy_class": { ":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c255c0d0b40>" }, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 1001472, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712040318761055432, "learning_rate": 0.0001, "tensorboard_log": null, "_last_obs": { ":type:": "", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJrfF77SGZs/izR8vtZ4xL7+UvK9Q2jYvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg==" }, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg==" }, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "_stats_window_size": 100, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG3V1Gb1AZ+MAWyUTT8BjAF0lEdAtLsQEIPbwnV9lChoBkdAbwysp5NXYGgHTUgBaAhHQLS7aCpWFOB1fZQoaAZHQHB7WTgVGkNoB0v4aAhHQLS7qGbCrLh1fZQoaAZHQG+1g2AG0NVoB00SAWgIR0C0u/I3rD64dX2UKGgGR0BuFeQp4KQaaAdNEQFoCEdAtLxPLhaTwHV9lChoBkdAaEzvnbItDmgHTUEBaAhHQLS8wSDyvs91fZQoaAZHQG/u7D/EOy5oB00iAWgIR0C0v1PL9uP4dX2UKGgGR0Bw69LqUu+RaAdNEgFoCEdAtL+cdKdxyXV9lChoBkdAcHUM7EHdGmgHTRwBaAhHQLS/68neBQN1fZQoaAZHQBpz+WGATZhoB0u4aAhHQLTAInCfpUx1fZQoaAZHQHDXMIVuaWpoB01PAWgIR0C0wH4keIVNdX2UKGgGR0BAOqXnhbW3aAdNMgFoCEdAtMDTBVMmGHV9lChoBkdAYPcjhUBGQWgHTegDaAhHQLTDsyUcGTt1fZQoaAZHQGvXkzGgi/xoB00kAWgIR0C0xAJ+tr9EdX2UKGgGR0BwFg+nqFAWaAdNLQFoCEdAtMRVKRMewXV9lChoBkdAcD7KLKmsNmgHTQoBaAhHQLTEniqyWzF1fZQoaAZHQHBXV10T101oB00NAWgIR0C0xOk7GNrCdX2UKGgGR0Bwv+7FsHjZaAdNuAFoCEdAtMVwcU/OdHV9lChoBkdAcHBmVqveQGgHTQgBaAhHQLTHmWeHzpZ1fZQoaAZHQG/0Uu14Pf9oB01KAWgIR0C0x/Rmf5DadX2UKGgGR0BvID08NhE0aAdNNwFoCEdAtMhXisGPgnV9lChoBkdAbP0CvovBamgHTSgBaAhHQLTIyqKgqVh1fZQoaAZHQG4Ltr0rbxpoB01GAWgIR0C0yUGNWEK3dX2UKGgGR0Bsej6JqIrOaAdNMwFoCEdAtMmuwmmcfHV9lChoBkfAGfs3Q2MsH2gHS81oCEdAtMn5t65Xl3V9lChoBkdAcGv/CqIacmgHTTQBaAhHQLTMPxkupS91fZQoaAZHwDD6nR9gF5hoB0ujaAhHQLTMbAXl8w51fZQoaAZHQHBvk7Sy+pRoB01CAWgIR0C0zMKeTV2BdX2UKGgGR0BwKLZK3/gjaAdNPQFoCEdAtM0aM3qA0HV9lChoBkdAcDCa3I+4b2gHTRcBaAhHQLTNYjDsMRZ1fZQoaAZHQG77VLamGdtoB00aAWgIR0C0za8ju8brdX2UKGgGR0BvmdSCOFQEaAdNSwFoCEdAtM4AIjW07nV9lChoBkdAcfI1J17pmmgHTXkBaAhHQLTQKLmp2ll1fZQoaAZHQG2qOoo/iYNoB00uAWgIR0C00HpcophGdX2UKGgGR0Br/3YWcjJNaAdNnAFoCEdAtNDv+GXXy3V9lChoBkdAb9fQv6CUYGgHTQoBaAhHQLTROjj7yhB1fZQoaAZHQGGWxUvPC2toB03oA2gIR0C01CZVbRnfdX2UKGgGR8BBKtY8uBczaAdL1WgIR0C01GAv6CUYdX2UKGgGR0Bt0KGtZFG5aAdNMgFoCEdAtNSxqwhW53V9lChoBkdAapqnKGL1mWgHTRQBaAhHQLTVHuqFRHh1fZQoaAZHQGl/iuMdcSpoB00oAWgIR0C01YugctGvdX2UKGgGR0BsLakIomXxaAdNGQFoCEdAtNXvOs1baHV9lChoBkdAcKl14Pf8/GgHTT4BaAhHQLTWXhYeT3Z1fZQoaAZHQGJI6fjCHh1oB03oA2gIR0C02WjJEH+qdX2UKGgGR0BwulUNrj5saAdNSAFoCEdAtNnB5Sm65HV9lChoBkdAcDY6d1+y7mgHTQ8BaAhHQLTaEp9JBgN1fZQoaAZHQG3vkQXhwVFoB008AWgIR0C02m0qlP8AdX2UKGgGR0Biz/hfjS5RaAdN6ANoCEdAtN1Nw1ivxHV9lChoBkdAcVZtfG+9J2gHTVQBaAhHQLTdp6Skj5d1fZQoaAZHQHA450KZ2IRoB00PAWgIR0C03ev336AOdX2UKGgGR0BwYZg1FYuCaAdNQgFoCEdAtN4/IHTqjnV9lChoBkdAbVZDDTBqK2gHTRMBaAhHQLTehaMaS9x1fZQoaAZHQG+FolD4QBhoB002AWgIR0C04J8nAqNIdX2UKGgGR0BvHpu89Oh1aAdNGAFoCEdAtODosTWXknV9lChoBkdAbGdI3BHkLmgHTRwBaAhHQLThS66J66d1fZQoaAZHQG5GmZ3LV4JoB00yAWgIR0C04b+xSpBHdX2UKGgGR8Az9rSmZVn3aAdLumgIR0C04gCuEEkjdX2UKGgGR0Br0MOuq3mWaAdNIgFoCEdAtOJuIVM233V9lChoBkdAbxmcDKYAsGgHTTYBaAhHQLTi5wbVBld1fZQoaAZHQG0+CiRGMGZoB00fAWgIR0C05RkSh8IBdX2UKGgGR0Bwqh+nZTQ3aAdNFwFoCEdAtOVqBClabHV9lChoBkdAcKmWszVMEmgHTQ0BaAhHQLTlsDaGpMp1fZQoaAZHQHCL5JCjUNNoB00xAWgIR0C05fz1f3N+dX2UKGgGR0BJpzrVvuPWaAdLzGgIR0C05jMGX5WSdX2UKGgGR0BtuUWfseGPaAdNOAFoCEdAtOaFoBaLXXV9lChoBkdAcPfCF9KEnWgHTVIBaAhHQLTm2RPoFFF1fZQoaAZHQHBmDxTbWVhoB003AWgIR0C05ybh3qzJdX2UKGgGR0BwDN7dBSk1aAdNJgFoCEdAtOk1HFxXGXV9lChoBkdAcA1WI42jwmgHTSYBaAhHQLTph0Xxe9l1fZQoaAZHQHGxOwkgOjJoB017AWgIR0C06em16Vt5dX2UKGgGR0BwvbpcHGCJaAdNVQFoCEdAtOpFZA6dUnV9lChoBkdAbH6uh9LHuWgHTRQBaAhHQLTqknzxwyZ1fZQoaAZHQG1ztrTH80loB00gAWgIR0C06uNroGILdX2UKGgGR0BuxCSJTER8aAdNcgFoCEdAtO0SuKXOW3V9lChoBkdAbFCtkFwDNmgHTTsBaAhHQLTtZxvNu+B1fZQoaAZHQG+4g4n4O+ZoB004AWgIR0C07ezjJdSmdX2UKGgGR0Bv2fpfQa73aAdNLwFoCEdAtO5Qppeu3nV9lChoBkdAbTN3zMA3k2gHTSkBaAhHQLTurjYI0Il1fZQoaAZHQHDzY0Q9RrJoB01WAWgIR0C07yJj2BatdX2UKGgGR0Bwpj4CZF5OaAdNJgFoCEdAtO+Q3cYZVHV9lChoBkdAbD86Zpi7TWgHTScBaAhHQLTxvtl7MPl1fZQoaAZHQGyuHQhOgxtoB00dAWgIR0C08hYZydWidX2UKGgGR0BwNRXA/LTyaAdNIQFoCEdAtPJpYuCf6HV9lChoBkdAbXOrRSgoPWgHTSYBaAhHQLTywBg/keZ1fZQoaAZHwD3dnzxwyZdoB0vFaAhHQLTy+GCZnct1fZQoaAZHQHBa2oNutOpoB01KAWgIR0C081qh6By0dX2UKGgGR0BwZ9ujynUEaAdNSwFoCEdAtPO3shPj43V9lChoBkdAb/ZsJpnHvWgHTRYBaAhHQLT1xcer+5x1fZQoaAZHQGp9MB6rvLJoB02vAWgIR0C09j5q7AcldX2UKGgGR0BwL9Qj2SMcaAdNUAFoCEdAtPaSYRdyDXV9lChoBkdAcKIhQm/nGWgHTVUBaAhHQLT255yEL6V1fZQoaAZHQG9h5xzaK1poB00kAWgIR0C09zNhJAdGdX2UKGgGR0BsKEQNCqp+aAdNHwFoCEdAtPd7kDIRy3V9lChoBkdAcA4QU5+6RWgHTSQBaAhHQLT5kxqfvnd1fZQoaAZHQHFyx/3Fkx1oB004AWgIR0C0+fgY+B6KdX2UKGgGR0BwJmnXNC7caAdNQwFoCEdAtPp/EKmbb3V9lChoBkdAbnNWXkYGdWgHTVABaAhHQLT68jt5UtJ1fZQoaAZHQG7l3VCojwBoB00mAWgIR0C0+2A62fCidX2UKGgGR0Bt3FTNt65YaAdNEgFoCEdAtPvNelbeM3V9lChoBkdAbXRMCcPOIWgHTSUBaAhHQLT8PY2sJY11ZS4=" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 10760, "observation_space": { ":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [ 8 ], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null }, "n_envs": 1, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": { ":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" }, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": { ":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" } }