--- library_name: transformers license: apache-2.0 base_model: sandeshrajx/bert-fraud-classification-test-mass tags: - generated_from_trainer metrics: - f1 - precision model-index: - name: bert-fraud-classification-test-mass-4 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/sandeshrajx/ultron-nlp/runs/xnpaqmt6) # bert-fraud-classification-test-mass-4 This model is a fine-tuned version of [sandeshrajx/bert-fraud-classification-test-mass](https://huggingface.co/sandeshrajx/bert-fraud-classification-test-mass) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3408 - F1: 0.8508 - Precision: 0.8627 - Val Accuracy: 0.8663 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 44 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 88 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Val Accuracy | |:-------------:|:------:|:----:|:---------------:|:------:|:---------:|:------------:| | 0.3874 | 0.1743 | 40 | 0.3197 | 0.8579 | 0.8936 | 0.8758 | | 0.3614 | 0.3486 | 80 | 0.3427 | 0.8382 | 0.8846 | 0.8603 | | 0.3563 | 0.5229 | 120 | 0.3505 | 0.8435 | 0.8468 | 0.8584 | | 0.4263 | 0.6972 | 160 | 0.3407 | 0.8454 | 0.8589 | 0.8617 | | 0.3514 | 0.8715 | 200 | 0.3473 | 0.8413 | 0.8421 | 0.8560 | | 0.259 | 1.0458 | 240 | 0.3378 | 0.8417 | 0.9106 | 0.8663 | | 0.3148 | 1.2200 | 280 | 0.3543 | 0.8479 | 0.8889 | 0.8679 | | 0.2685 | 1.3943 | 320 | 0.3507 | 0.8501 | 0.9040 | 0.8715 | | 0.2271 | 1.5686 | 360 | 0.3773 | 0.8406 | 0.8262 | 0.8526 | | 0.376 | 1.7429 | 400 | 0.3412 | 0.8520 | 0.8731 | 0.8687 | | 0.2739 | 1.9172 | 440 | 0.3408 | 0.8508 | 0.8627 | 0.8663 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1