#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import random import sys import torch import transformers from transformers import AutoModelForCausalLM, set_seed from alignment import ( DataArguments, DPOConfig, H4ArgumentParser, ModelArguments, apply_chat_template, get_checkpoint, get_datasets, get_kbit_device_map, get_peft_config, get_quantization_config, get_tokenizer, is_adapter_model, ) from peft import PeftConfig, PeftModel from trl import DPOTrainer logger = logging.getLogger(__name__) def main(): parser = H4ArgumentParser((ModelArguments, DataArguments, DPOConfig)) model_args, data_args, training_args = parser.parse() ####### # Setup ####### logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) log_level = training_args.get_process_log_level() logger.setLevel(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.info(f"Model parameters {model_args}") logger.info(f"Data parameters {data_args}") logger.info(f"Training/evaluation parameters {training_args}") # Check for last checkpoint last_checkpoint = get_checkpoint(training_args) if last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info(f"Checkpoint detected, resuming training at {last_checkpoint=}.") # Set seed for reproducibility set_seed(training_args.seed) ############### # Load datasets ############### raw_datasets = get_datasets(data_args, splits=data_args.dataset_splits) logger.info( f"Training on the following splits: {[split + ' : ' + str(dset.num_rows) for split, dset in raw_datasets.items()]}" ) column_names = list(raw_datasets["train"].features) ##################################### # Load tokenizer and process datasets ##################################### data_args.truncation_side = "left" # Truncate from left to ensure we don't lose labels in final turn tokenizer = get_tokenizer(model_args, data_args) ##################### # Apply chat template ##################### raw_datasets = raw_datasets.map( apply_chat_template, fn_kwargs={"tokenizer": tokenizer, "task": "dpo"}, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, desc="Formatting comparisons with prompt template", ) # Replace column names with what TRL needs, text_chosen -> chosen and text_rejected -> rejected for split in ["train", "test"]: raw_datasets[split] = raw_datasets[split].rename_columns( {"text_prompt": "prompt", "text_chosen": "chosen", "text_rejected": "rejected"} ) # Log a few random samples from the training set: for index in random.sample(range(len(raw_datasets["train"])), 3): logger.info(f"Prompt sample {index} of the raw training set:\n\n{raw_datasets['train'][index]['prompt']}") logger.info(f"Chosen sample {index} of the raw training set:\n\n{raw_datasets['train'][index]['chosen']}") logger.info(f"Rejected sample {index} of the raw training set:\n\n{raw_datasets['train'][index]['rejected']}") torch_dtype = ( model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype) ) quantization_config = get_quantization_config(model_args) model_kwargs = dict( revision=model_args.model_revision, trust_remote_code=model_args.trust_remote_code, use_flash_attention_2=model_args.use_flash_attention_2, torch_dtype=torch_dtype, use_cache=False if training_args.gradient_checkpointing else True, device_map=get_kbit_device_map() if quantization_config is not None else None, quantization_config=quantization_config, ) model = model_args.model_name_or_path if is_adapter_model(model, model_args.model_revision) is True: # Load the base model, merge the adapter weights and unload the adapter # Note: to run QLoRA, you will need to merge the base model separately as the merged model in 16bit logger.info(f"Merging PEFT adapters for {model_args.model_name_or_path=}") peft_config = PeftConfig.from_pretrained(model_args.model_name_or_path, revision=model_args.model_revision) model_kwargs = dict( revision=model_args.base_model_revision, trust_remote_code=model_args.trust_remote_code, use_flash_attention_2=model_args.use_flash_attention_2, torch_dtype=torch_dtype, use_cache=False if training_args.gradient_checkpointing else True, ) base_model = AutoModelForCausalLM.from_pretrained( peft_config.base_model_name_or_path, **model_kwargs, ) model = PeftModel.from_pretrained( base_model, model_args.model_name_or_path, revision=model_args.model_revision ) model.eval() model = model.merge_and_unload() model_kwargs = None ref_model = model ref_model_kwargs = model_kwargs if model_args.use_peft is True: ref_model = None ref_model_kwargs = None ######################### # Instantiate DPO trainer ######################### trainer = DPOTrainer( model, ref_model, model_init_kwargs=model_kwargs, ref_model_init_kwargs=ref_model_kwargs, args=training_args, beta=training_args.beta, train_dataset=raw_datasets["train"], eval_dataset=raw_datasets["test"], tokenizer=tokenizer, max_length=training_args.max_length, max_prompt_length=training_args.max_prompt_length, peft_config=get_peft_config(model_args), loss_type=training_args.loss_type, ) ############### # Training loop ############### checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) metrics = train_result.metrics metrics["train_samples"] = len(raw_datasets["train"]) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() logger.info("*** Training complete ***") ########## # Evaluate ########## if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate() metrics["eval_samples"] = len(raw_datasets["test"]) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) ################################## # Save model and create model card ################################## logger.info("*** Save model ***") trainer.save_model(training_args.output_dir) logger.info(f"Model saved to {training_args.output_dir}") # Save everything else on main process kwargs = { "finetuned_from": model_args.model_name_or_path, "dataset": list(data_args.dataset_mixer.keys()), "dataset_tags": list(data_args.dataset_mixer.keys()), "tags": ["alignment-handbook"], } if trainer.accelerator.is_main_process: trainer.create_model_card(**kwargs) # Restore k,v cache for fast inference trainer.model.config.use_cache = True trainer.model.config.save_pretrained(training_args.output_dir) if training_args.push_to_hub is True: logger.info("Pushing to hub...") trainer.push_to_hub(**kwargs) logger.info("*** Training complete! ***") if __name__ == "__main__": main()