--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: finetuned-clothes results: [] --- # finetuned-clothes This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the clothes_simplifiedv2 dataset. It achieves the following results on the evaluation set: - Loss: 0.2225 - Accuracy: 0.9417 ## Model description This model classifies clothes category based on the given image. ## Intended uses You can use it in a jupyter notebook: ```python from PIL import Image import requests url = 'insert image url here' image = Image.open(requests.get(url, stream=True).raw) ``` ```python from transformers import AutoModelForImageClassification, AutoImageProcessor repo_name = "samokosik/finetuned-clothes" image_processor = AutoImageProcessor.from_pretrained(repo_name) model = AutoModelForImageClassification.from_pretrained(repo_name) ``` ```python encoding = image_processor(image.convert("RGB"), return_tensors="pt") print(encoding.pixel_values.shape) ``` ```python import torch with torch.no_grad(): outputs = model(**encoding) logits = outputs.logits ``` ```python predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` ## Limitations Due to lack of available data, we support only these categories: hat, longsleeve, outswear, pants, shoes, shorts, shortsleve. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.7725 | 0.2058 | 100 | 0.7008 | 0.8178 | | 0.5535 | 0.4115 | 200 | 0.4494 | 0.8994 | | 0.4334 | 0.6173 | 300 | 0.3649 | 0.9169 | | 0.3921 | 0.8230 | 400 | 0.3085 | 0.9184 | | 0.3695 | 1.0288 | 500 | 0.3091 | 0.9184 | | 0.2634 | 1.2346 | 600 | 0.3339 | 0.9082 | | 0.4788 | 1.4403 | 700 | 0.2827 | 0.9257 | | 0.3337 | 1.6461 | 800 | 0.2499 | 0.9344 | | 0.34 | 1.8519 | 900 | 0.2586 | 0.9315 | | 0.2424 | 2.0576 | 1000 | 0.2248 | 0.9402 | | 0.1559 | 2.2634 | 1100 | 0.2333 | 0.9344 | | 0.351 | 2.4691 | 1200 | 0.2495 | 0.9359 | | 0.2206 | 2.6749 | 1300 | 0.2622 | 0.9242 | | 0.3814 | 2.8807 | 1400 | 0.3138 | 0.9155 | | 0.2141 | 3.0864 | 1500 | 0.2613 | 0.9315 | | 0.112 | 3.2922 | 1600 | 0.2266 | 0.9402 | | 0.0631 | 3.4979 | 1700 | 0.2255 | 0.9402 | | 0.1986 | 3.7037 | 1800 | 0.2225 | 0.9417 | | 0.2345 | 3.9095 | 1900 | 0.2235 | 0.9373 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1 ## Training dataset This model was trained on the following dataset: https://huggingface.co/datasets/samokosik/clothes_simplifiedv2