from typing import Dict, Any, List import torch from transformers import T5ForConditionalGeneration, T5Tokenizer class EndpointHandler(): def __init__(self, path=""): self.device = 'cuda' if torch.cuda.is_available() else 'cpu' try: self.model = T5ForConditionalGeneration.from_pretrained(path).to(self.device) self.tokenizer = T5Tokenizer.from_pretrained(path) except Exception as e: print(f"Error loading model or tokenizer from path {path}: {e}") # Handle error (e.g., exit or set model/tokenizer to None) def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: inputs = data.get("inputs", "") if not inputs: return [{"error": "No inputs provided"}] tokenized_input = self.tokenizer(inputs, return_tensors="pt", truncation=True, max_length=512, padding="max_length") tokenized_input = tokenized_input.to(self.device) # Move input tensors to the same device as model summary_ids = self.model.generate(**tokenized_input, max_length=400, do_sample=True, top_p=0.8) summary_text = self.tokenizer.decode(summary_ids[0], skip_special_tokens=True) return [{"summary": summary_text}]