--- license: other library_name: peft tags: - axolotl - generated_from_trainer base_model: meta-llama/Meta-Llama-3-8B model-index: - name: llama3_8b_odia_v2 results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: meta-llama/Meta-Llama-3-8B model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: OdiaGenAIdata/culturax-odia type: completion field: text dataset_prepared_path: val_set_size: 0.1 output_dir: ./llama_3_8b_pretrain_v2 hub_model_id: sam2ai/llama3_8b_odia_v2 adapter: qlora lora_model_dir: sequence_len: 4096 sample_packing: true pad_to_sequence_len: true lora_r: 64 lora_alpha: 128 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true #lora_modules_to_save: # - embed_tokens # - lm_head lora_fan_in_fan_out: wandb_project: llama-3-8b-pretrain-odia-plain wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 2 num_epochs: 4 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: false warmup_steps: 10 evals_per_epoch: 4 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: "<|end_of_text|>" save_safetensors: True ```

# llama3_8b_odia_v2 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 13.7841 | 0.0007 | 1 | nan | | 0.0 | 0.25 | 384 | nan | | 0.0 | 0.5 | 768 | nan | | 0.0 | 0.75 | 1152 | nan | | 0.0 | 1.0 | 1536 | nan | | 0.0 | 1.2362 | 1920 | nan | | 0.0 | 1.4862 | 2304 | nan | | 0.0 | 1.7362 | 2688 | nan | | 0.0 | 1.9862 | 3072 | nan | | 0.0 | 2.2220 | 3456 | nan | | 0.0 | 2.4720 | 3840 | nan | | 0.0 | 2.7220 | 4224 | nan | | 0.0 | 2.9720 | 4608 | nan | | 0.0 | 3.2078 | 4992 | nan | | 0.0 | 3.4578 | 5376 | nan | | 0.0 | 3.7078 | 5760 | nan | | 0.0 | 3.9578 | 6144 | nan | ### Framework versions - PEFT 0.9.0 - Transformers 4.40.0 - Pytorch 2.4.0.dev20240326+rocm6.0 - Datasets 2.15.0 - Tokenizers 0.19.1