---
license: other
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: meta-llama/Meta-Llama-3-8B
model-index:
- name: llama3_8b_odia_v2
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: meta-llama/Meta-Llama-3-8B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: OdiaGenAIdata/culturax-odia
type: completion
field: text
dataset_prepared_path:
val_set_size: 0.1
output_dir: ./llama_3_8b_pretrain_v2
hub_model_id: sam2ai/llama3_8b_odia_v2
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
lora_r: 64
lora_alpha: 128
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
#lora_modules_to_save:
# - embed_tokens
# - lm_head
lora_fan_in_fan_out:
wandb_project: llama-3-8b-pretrain-odia-plain
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: "<|end_of_text|>"
save_safetensors: True
```
# llama3_8b_odia_v2
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: nan
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 13.7841 | 0.0007 | 1 | nan |
| 0.0 | 0.25 | 384 | nan |
| 0.0 | 0.5 | 768 | nan |
| 0.0 | 0.75 | 1152 | nan |
| 0.0 | 1.0 | 1536 | nan |
| 0.0 | 1.2362 | 1920 | nan |
| 0.0 | 1.4862 | 2304 | nan |
| 0.0 | 1.7362 | 2688 | nan |
| 0.0 | 1.9862 | 3072 | nan |
| 0.0 | 2.2220 | 3456 | nan |
| 0.0 | 2.4720 | 3840 | nan |
| 0.0 | 2.7220 | 4224 | nan |
| 0.0 | 2.9720 | 4608 | nan |
| 0.0 | 3.2078 | 4992 | nan |
| 0.0 | 3.4578 | 5376 | nan |
| 0.0 | 3.7078 | 5760 | nan |
| 0.0 | 3.9578 | 6144 | nan |
### Framework versions
- PEFT 0.9.0
- Transformers 4.40.0
- Pytorch 2.4.0.dev20240326+rocm6.0
- Datasets 2.15.0
- Tokenizers 0.19.1