--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: parking-utcustom-train-SF-RGBD-b5_1 results: [] --- # parking-utcustom-train-SF-RGBD-b5_1 This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/parking-utcustom-train dataset. It achieves the following results on the evaluation set: - Loss: 0.0476 - Mean Iou: 0.4942 - Mean Accuracy: 0.9883 - Overall Accuracy: 0.9883 - Accuracy Unlabeled: nan - Accuracy Parking: nan - Accuracy Unparking: 0.9883 - Iou Unlabeled: nan - Iou Parking: 0.0 - Iou Unparking: 0.9883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Accuracy Parking | Accuracy Unlabeled | Accuracy Unparking | Iou Parking | Iou Unlabeled | Iou Unparking | Validation Loss | Mean Accuracy | Mean Iou | Overall Accuracy | |:-------------:|:-----:|:----:|:----------------:|:------------------:|:------------------:|:-----------:|:-------------:|:-------------:|:---------------:|:-------------:|:--------:|:----------------:| | 0.4573 | 20.0 | 20 | nan | nan | 0.9829 | 0.0 | 0.0 | 0.9829 | 0.3024 | 0.9829 | 0.3276 | 0.9829 | | 0.2183 | 40.0 | 40 | nan | nan | 0.9953 | 0.0 | 0.0 | 0.9953 | 0.2365 | 0.9953 | 0.3318 | 0.9953 | | 0.1266 | 60.0 | 60 | nan | nan | 1.0 | nan | nan | 1.0 | 0.0999 | 1.0 | 1.0 | 1.0 | | 0.0929 | 80.0 | 80 | nan | nan | 0.9972 | 0.0 | nan | 0.9972 | 0.0590 | 0.9972 | 0.4986 | 0.9972 | | 0.0649 | 100.0 | 100 | 0.0346 | 0.4992 | 0.9984 | 0.9984 | nan | nan | 0.9984 | nan | 0.0 | 0.9984 | | 0.0537 | 120.0 | 120 | 0.0377 | 0.4980 | 0.9960 | 0.9960 | nan | nan | 0.9960 | nan | 0.0 | 0.9960 | | 0.0536 | 140.0 | 140 | 0.0476 | 0.4942 | 0.9883 | 0.9883 | nan | nan | 0.9883 | nan | 0.0 | 0.9883 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3