--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_cross_relevance_task4_fold4 results: [] --- # arabert_cross_relevance_task4_fold4 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2131 - Qwk: 0.2800 - Mse: 0.2131 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | No log | 0.0290 | 2 | 1.5877 | 0.0071 | 1.5877 | | No log | 0.0580 | 4 | 0.7523 | 0.0797 | 0.7523 | | No log | 0.0870 | 6 | 0.4972 | 0.2325 | 0.4972 | | No log | 0.1159 | 8 | 0.4973 | 0.2818 | 0.4973 | | No log | 0.1449 | 10 | 0.3782 | 0.2548 | 0.3782 | | No log | 0.1739 | 12 | 0.3328 | 0.2641 | 0.3328 | | No log | 0.2029 | 14 | 0.2810 | 0.2677 | 0.2810 | | No log | 0.2319 | 16 | 0.2749 | 0.2717 | 0.2749 | | No log | 0.2609 | 18 | 0.2745 | 0.2169 | 0.2745 | | No log | 0.2899 | 20 | 0.2605 | 0.2602 | 0.2605 | | No log | 0.3188 | 22 | 0.2453 | 0.2528 | 0.2453 | | No log | 0.3478 | 24 | 0.2442 | 0.2459 | 0.2442 | | No log | 0.3768 | 26 | 0.2468 | 0.2763 | 0.2468 | | No log | 0.4058 | 28 | 0.2595 | 0.2864 | 0.2595 | | No log | 0.4348 | 30 | 0.2694 | 0.2852 | 0.2694 | | No log | 0.4638 | 32 | 0.2515 | 0.2790 | 0.2515 | | No log | 0.4928 | 34 | 0.2280 | 0.3189 | 0.2280 | | No log | 0.5217 | 36 | 0.2522 | 0.4255 | 0.2522 | | No log | 0.5507 | 38 | 0.2616 | 0.3794 | 0.2616 | | No log | 0.5797 | 40 | 0.2487 | 0.2990 | 0.2487 | | No log | 0.6087 | 42 | 0.2345 | 0.2490 | 0.2345 | | No log | 0.6377 | 44 | 0.2296 | 0.2615 | 0.2296 | | No log | 0.6667 | 46 | 0.2262 | 0.2654 | 0.2262 | | No log | 0.6957 | 48 | 0.2230 | 0.2654 | 0.2230 | | No log | 0.7246 | 50 | 0.2198 | 0.2691 | 0.2198 | | No log | 0.7536 | 52 | 0.2182 | 0.2728 | 0.2182 | | No log | 0.7826 | 54 | 0.2166 | 0.2763 | 0.2166 | | No log | 0.8116 | 56 | 0.2162 | 0.2763 | 0.2162 | | No log | 0.8406 | 58 | 0.2158 | 0.2798 | 0.2158 | | No log | 0.8696 | 60 | 0.2144 | 0.2798 | 0.2144 | | No log | 0.8986 | 62 | 0.2129 | 0.2798 | 0.2129 | | No log | 0.9275 | 64 | 0.2125 | 0.2763 | 0.2125 | | No log | 0.9565 | 66 | 0.2128 | 0.2728 | 0.2128 | | No log | 0.9855 | 68 | 0.2131 | 0.2800 | 0.2131 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1