File size: 6,606 Bytes
c8d0fe3
 
 
 
 
cf918d3
c8d0fe3
 
 
 
 
 
cf918d3
c8d0fe3
 
 
cf918d3
 
 
c8d0fe3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf918d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8d0fe3
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_trainer
model-index:
- name: arabert_cross_development_task1_fold3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# arabert_cross_development_task1_fold3

This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5861
- Qwk: 0.7634
- Mse: 0.5861

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Qwk    | Mse    |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
| No log        | 0.1333 | 2    | 1.7502          | 0.1271 | 1.7502 |
| No log        | 0.2667 | 4    | 1.2292          | 0.1987 | 1.2292 |
| No log        | 0.4    | 6    | 1.3080          | 0.3555 | 1.3080 |
| No log        | 0.5333 | 8    | 0.9607          | 0.4976 | 0.9607 |
| No log        | 0.6667 | 10   | 0.8578          | 0.6328 | 0.8578 |
| No log        | 0.8    | 12   | 0.8243          | 0.6683 | 0.8243 |
| No log        | 0.9333 | 14   | 0.6736          | 0.6082 | 0.6736 |
| No log        | 1.0667 | 16   | 0.6841          | 0.5941 | 0.6841 |
| No log        | 1.2    | 18   | 0.6510          | 0.6300 | 0.6510 |
| No log        | 1.3333 | 20   | 0.7744          | 0.7345 | 0.7744 |
| No log        | 1.4667 | 22   | 0.6786          | 0.7336 | 0.6786 |
| No log        | 1.6    | 24   | 0.5769          | 0.6663 | 0.5769 |
| No log        | 1.7333 | 26   | 0.5647          | 0.6751 | 0.5647 |
| No log        | 1.8667 | 28   | 0.6191          | 0.7228 | 0.6191 |
| No log        | 2.0    | 30   | 0.6480          | 0.7149 | 0.6480 |
| No log        | 2.1333 | 32   | 0.5930          | 0.6377 | 0.5930 |
| No log        | 2.2667 | 34   | 0.5792          | 0.6840 | 0.5792 |
| No log        | 2.4    | 36   | 0.6399          | 0.7684 | 0.6399 |
| No log        | 2.5333 | 38   | 0.6099          | 0.7730 | 0.6099 |
| No log        | 2.6667 | 40   | 0.5513          | 0.7336 | 0.5513 |
| No log        | 2.8    | 42   | 0.5787          | 0.7674 | 0.5787 |
| No log        | 2.9333 | 44   | 0.6353          | 0.7926 | 0.6353 |
| No log        | 3.0667 | 46   | 0.5670          | 0.7594 | 0.5670 |
| No log        | 3.2    | 48   | 0.6004          | 0.7827 | 0.6004 |
| No log        | 3.3333 | 50   | 0.6263          | 0.7869 | 0.6263 |
| No log        | 3.4667 | 52   | 0.5762          | 0.7498 | 0.5762 |
| No log        | 3.6    | 54   | 0.5570          | 0.7472 | 0.5570 |
| No log        | 3.7333 | 56   | 0.6280          | 0.7790 | 0.6280 |
| No log        | 3.8667 | 58   | 0.6056          | 0.7764 | 0.6056 |
| No log        | 4.0    | 60   | 0.5239          | 0.7299 | 0.5239 |
| No log        | 4.1333 | 62   | 0.5192          | 0.7305 | 0.5192 |
| No log        | 4.2667 | 64   | 0.5703          | 0.7631 | 0.5703 |
| No log        | 4.4    | 66   | 0.6518          | 0.7918 | 0.6518 |
| No log        | 4.5333 | 68   | 0.7302          | 0.7883 | 0.7302 |
| No log        | 4.6667 | 70   | 0.6654          | 0.7960 | 0.6654 |
| No log        | 4.8    | 72   | 0.5714          | 0.7539 | 0.5714 |
| No log        | 4.9333 | 74   | 0.5149          | 0.7046 | 0.5149 |
| No log        | 5.0667 | 76   | 0.5129          | 0.6751 | 0.5129 |
| No log        | 5.2    | 78   | 0.5200          | 0.7257 | 0.5200 |
| No log        | 5.3333 | 80   | 0.5968          | 0.7701 | 0.5968 |
| No log        | 5.4667 | 82   | 0.6356          | 0.7899 | 0.6356 |
| No log        | 5.6    | 84   | 0.5976          | 0.7718 | 0.5976 |
| No log        | 5.7333 | 86   | 0.5510          | 0.7528 | 0.5510 |
| No log        | 5.8667 | 88   | 0.5499          | 0.7505 | 0.5499 |
| No log        | 6.0    | 90   | 0.5581          | 0.7507 | 0.5581 |
| No log        | 6.1333 | 92   | 0.5846          | 0.7624 | 0.5846 |
| No log        | 6.2667 | 94   | 0.6247          | 0.7828 | 0.6247 |
| No log        | 6.4    | 96   | 0.6363          | 0.7865 | 0.6363 |
| No log        | 6.5333 | 98   | 0.6065          | 0.7792 | 0.6065 |
| No log        | 6.6667 | 100  | 0.5753          | 0.7552 | 0.5753 |
| No log        | 6.8    | 102  | 0.5617          | 0.7438 | 0.5617 |
| No log        | 6.9333 | 104  | 0.5593          | 0.7415 | 0.5593 |
| No log        | 7.0667 | 106  | 0.5501          | 0.7410 | 0.5501 |
| No log        | 7.2    | 108  | 0.5736          | 0.7489 | 0.5736 |
| No log        | 7.3333 | 110  | 0.6235          | 0.7773 | 0.6235 |
| No log        | 7.4667 | 112  | 0.6392          | 0.7840 | 0.6392 |
| No log        | 7.6    | 114  | 0.6211          | 0.7732 | 0.6211 |
| No log        | 7.7333 | 116  | 0.5970          | 0.7733 | 0.5970 |
| No log        | 7.8667 | 118  | 0.5611          | 0.7530 | 0.5611 |
| No log        | 8.0    | 120  | 0.5439          | 0.7470 | 0.5439 |
| No log        | 8.1333 | 122  | 0.5497          | 0.7484 | 0.5497 |
| No log        | 8.2667 | 124  | 0.5836          | 0.7580 | 0.5836 |
| No log        | 8.4    | 126  | 0.6389          | 0.7749 | 0.6389 |
| No log        | 8.5333 | 128  | 0.6778          | 0.7817 | 0.6778 |
| No log        | 8.6667 | 130  | 0.6794          | 0.7790 | 0.6794 |
| No log        | 8.8    | 132  | 0.6575          | 0.7769 | 0.6575 |
| No log        | 8.9333 | 134  | 0.6182          | 0.7797 | 0.6182 |
| No log        | 9.0667 | 136  | 0.5921          | 0.7689 | 0.5921 |
| No log        | 9.2    | 138  | 0.5771          | 0.7588 | 0.5771 |
| No log        | 9.3333 | 140  | 0.5657          | 0.7530 | 0.5657 |
| No log        | 9.4667 | 142  | 0.5672          | 0.7530 | 0.5672 |
| No log        | 9.6    | 144  | 0.5759          | 0.7639 | 0.5759 |
| No log        | 9.7333 | 146  | 0.5809          | 0.7611 | 0.5809 |
| No log        | 9.8667 | 148  | 0.5847          | 0.7611 | 0.5847 |
| No log        | 10.0   | 150  | 0.5861          | 0.7634 | 0.5861 |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1