{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a8e72290180>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 229376, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1724932876287872543, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV7gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIrTUNKAayMAWyUS/SMAXSUR0CoGd0daMaTdX2UKGgGR0BvwnzOHFglaAdL2mgIR0CoGogTyrggdX2UKGgGR0BxI91loUSJaAdLzWgIR0CoGzTHjp9rdX2UKGgGR0ByHvHAAQxvaAdL0WgIR0CoG32CuloEdX2UKGgGR0Bxj+SIP9UCaAdLwmgIR0CoG6dnCfpVdX2UKGgGR0BuZOrGR3eOaAdLzWgIR0CoHFapxWDIdX2UKGgGR0BwZfpPhybQaAdLx2gIR0CoHI7/XGwSdX2UKGgGR0BxSuVTrE9/aAdLy2gIR0CoHLjrAxi5dX2UKGgGR0ByCiwpvxYraAdNBAFoCEdAqBzZ7NSqEXV9lChoBkdAcWYOavzOHGgHS89oCEdAqB2Kxu89OnV9lChoBkdAW53HT7VJ+WgHTegDaAhHQKgeH4pMHr11fZQoaAZHQHCYyZa3ZwpoB0vJaAhHQKgeR/95yEN1fZQoaAZHQHCNI4Qz1sdoB0vpaAhHQKgefMGHHm11fZQoaAZHQG5pLu6VdHFoB0vQaAhHQKgfSEr5IpZ1fZQoaAZHQHH0IL9deIFoB0vxaAhHQKgfWiMYMv11fZQoaAZHQHGI9n003wVoB0vdaAhHQKgfs69TP0J1fZQoaAZHQHGJIlD4QBhoB0vdaAhHQKgf0iJO32F1fZQoaAZHQHHIiRwIdENoB0vNaAhHQKggRNB4Uvh1fZQoaAZHQHI8cbR4QjFoB0vRaAhHQKggc/dIoVp1fZQoaAZHQHJdGuoxYaJoB0vqaAhHQKggiQfZElV1fZQoaAZHQHGvF0PpY9xoB0vEaAhHQKgharTYukF1fZQoaAZHQG+8Lqt5le5oB0v1aAhHQKghsgXdj5N1fZQoaAZHQHHe0KeCkGloB0vFaAhHQKgh1QdCE6F1fZQoaAZHQHCzmIoE0SBoB0vmaAhHQKgiNVJ+UhV1fZQoaAZHQHAahi5NGmVoB0vRaAhHQKgi9syBTXJ1fZQoaAZHQHDsEYfnwG5oB0vZaAhHQKgjMXvYvnN1fZQoaAZHQG8PHDJlrdpoB0vJaAhHQKgjSl54W1t1fZQoaAZHQG9G7qIJqqRoB0vEaAhHQKgjVAE+xGF1fZQoaAZHQGJp8ebNKRNoB03oA2gIR0CoI4z4L1EmdX2UKGgGR0Bx4Hin5zo2aAdLvWgIR0CoI8mukk8idX2UKGgGR0BmoAhhYvFnaAdN6ANoCEdAqCP8LpiZv3V9lChoBkdAcWxnLq2SdWgHS9VoCEdAqCQu1v2oN3V9lChoBkdAchgob4rSVmgHS9loCEdAqCTvKdQO4HV9lChoBkdAcsMS1Vo6CGgHS+loCEdAqCVjmQr+YXV9lChoBkdAcnw4oqkM1GgHS91oCEdAqCWjsQd0aXV9lChoBkdAcqI1WbPQfWgHTRIBaAhHQKgmIXm/3391fZQoaAZHQHHqpOrQw9JoB0vSaAhHQKgmbLM9r451fZQoaAZHQHDCWnjyWiVoB0vaaAhHQKgmcFoL5RF1fZQoaAZHQG9H8M3IdU9oB0vXaAhHQKgmeSqU/wB1fZQoaAZHQHIKZGax5cFoB0vYaAhHQKgmuI7eVLV1fZQoaAZHQHJs761stTVoB0v8aAhHQKgmw1mapgl1fZQoaAZHQG5aLfLs8gZoB0vSaAhHQKgm3Vqesgd1fZQoaAZHQG74BV2icoZoB0vNaAhHQKgm+pMHryF1fZQoaAZHQGRs0EPlMh5oB03oA2gIR0CoJ1z2WY4RdX2UKGgGR0By49OTJQtSaAdL72gIR0CoJ6YS6DoRdX2UKGgGR0Bx97mKZUkwaAdL3GgIR0CoKCHDziCKdX2UKGgGR0BwuIN6PbPAaAdL02gIR0CoKLIZZSvUdX2UKGgGR0Bwlo5vLowFaAdL7WgIR0CoKNmCZnctdX2UKGgGR0Bw/HAxi5NHaAdLuGgIR0CoKQu+7Dl6dX2UKGgGR0Bw5KQvHtF8aAdL02gIR0CoKXTLwF1TdX2UKGgGR0Byvy4vvjOtaAdL7GgIR0CoKZQLmZE2dX2UKGgGR0Bxmrmhdt2taAdL22gIR0CoKZ+IEbHZdX2UKGgGR0BwyoHB1s+FaAdLuWgIR0CoKaXEQ5FPdX2UKGgGR0BxuXsPatcOaAdL4GgIR0CoKfptBOYZdX2UKGgGR0BvpVgrpaA4aAdL42gIR0CoKiG1IAfddX2UKGgGR0Bv2xFXq7iAaAdLwGgIR0CoKibF85S4dX2UKGgGR0Bfkx0IToMbaAdN6ANoCEdAqCqlaW5Yo3V9lChoBkdAcdBnL7oB72gHS89oCEdAqCszAaef7XV9lChoBkdAQlSPGQ0XQGgHS5NoCEdAqCs37vXsgXV9lChoBkdAcU0OSW7e22gHS/toCEdAqCtQvDgqE3V9lChoBkdAccJuU2UB4mgHS8RoCEdAqCuXKU3XI3V9lChoBkdAcqdtix3V1GgHTVsBaAhHQKgrtXHR1HR1fZQoaAZHQHCUB+fAbhpoB0u1aAhHQKgsD0QK8cx1fZQoaAZHQHCf7AUL2HtoB0vdaAhHQKgsD8DSw4d1fZQoaAZHQGaR5wwTM7loB03oA2gIR0CoLE3hwVCYdX2UKGgGR0Bx9C4MF2V3aAdLwmgIR0CoLGEzwc5sdX2UKGgGR0Bx9yfe1rqMaAdL0GgIR0CoLIOU+s5odX2UKGgGR0Bua3zg/C66aAdL0GgIR0CoLPscIZ62dX2UKGgGR0ByMIDNhVlxaAdNHgFoCEdAqC2adQO4G3V9lChoBkdAcpHr+o99t2gHS7xoCEdAqC3AMa0hNnV9lChoBkdAcKgv114gR2gHS+toCEdAqC3ZekYXPHV9lChoBkdAc05LbHp8nmgHS8ZoCEdAqC38X1rZanV9lChoBkdAcfnwaR6ni2gHS7hoCEdAqC4QL3K0U3V9lChoBkdAb62g6EJ0GWgHS8BoCEdAqC6pS9/SY3V9lChoBkdAcKrornTy8WgHS8NoCEdAqC65sMy8BnV9lChoBkdAcBpwqy4WlGgHS8poCEdAqC8rfrKNhnV9lChoBkdAb9u2H+Idl2gHS8BoCEdAqC9DUZvUBnV9lChoBkdAcEClsP8Q7WgHS81oCEdAqC9KwdKdx3V9lChoBkdAZEiv9tMwlGgHTegDaAhHQKgvS//vOQh1fZQoaAZHQHOvAfyPMjhoB006AWgIR0CoL5kSVW0adX2UKGgGR0BxlCgVXV9XaAdNKwFoCEdAqC/hhQWN3nV9lChoBkdAcajEpAlfJGgHS9toCEdAqDAiF7D2rXV9lChoBkdAbUZd1uBMBmgHS8NoCEdAqDCQmZ3LWHV9lChoBkdAbteLmZE2HmgHS8FoCEdAqDCjzND+i3V9lChoBkdAcw8AZsKsuGgHS7RoCEdAqDCrbQC0W3V9lChoBkdAchjm6GxlhGgHS91oCEdAqDDN6C17Y3V9lChoBkdAc2+LzwtrbmgHS71oCEdAqDGIIv8IiXV9lChoBkdAcOjpaA4GU2gHS8xoCEdAqDHzayrxRXV9lChoBkdAb7SR8twrD2gHTQoBaAhHQKgyMK0lZ5l1fZQoaAZHQHFF0tRNyo5oB0u8aAhHQKgyRglWwNd1fZQoaAZHQG81WrwOOKhoB0u7aAhHQKgyTV+7UXp1fZQoaAZHQHOsSMglnh9oB0vSaAhHQKgyvXDm8ul1fZQoaAZHQHDK4keIVM5oB0uxaAhHQKgzX91EE1V1fZQoaAZHQHGC4nBtUGVoB0v7aAhHQKgzbvvSc9Z1fZQoaAZHQHAtRnvlU6xoB0vcaAhHQKgzdAgPmPp1fZQoaAZHQHMW+dCmdiFoB0vQaAhHQKgznq9Gqgh1fZQoaAZHQHGTDRD1GspoB0vUaAhHQKg1Hw6QvHt1fZQoaAZHQHMM0XYUWVNoB0vpaAhHQKg1azgMtsh1fZQoaAZHQHHw85S3soloB0v5aAhHQKg1piZv1lJ1fZQoaAZHQHDj7eVLSNRoB0vDaAhHQKg1v/4Irvt1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 360, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}