--- license: mit tags: - nepali-nlp - nepali-news-classificiation - nlp - transformers - deep-learning - pytorch - transfer-learning model-index: - name: patrakar results: [] widget: - text: "नेकपा (एमाले)का नेता गोकर्णराज विष्टले सहमति र सहकार्यबाटै संविधान बनाउने तथा जनताको जीवनस्तर उकास्ने काम गर्नु नै अबको मुख्य काम रहेको बताएका छन् ।" example_title: "Example 1" - text: "राजनीतिक स्थिरता नहुँदा विकास निर्माणले गति लिन सकेन" example_title: "Example 2" - text: "छाउगोठ भत्काइदिए फेरि बनाउने, बनाउन नपाए ओडार वा बारीका कान्लामा रात बिताउने र ज्यानकै जोखिम मोल्न तयार हुने प्रवृत्तिबाट थाहा हुन्छ– छाउपडी प्रथा हटाउनका लागि बनाइएका अहिलेसम्मका योजना, रणनीति उपयुक्त छैनन् र गरिएको लगानी खेर गइरहेको छ" example_title: "Example 3" --- # patrakar/ पत्रकार (Nepali News Classifier) Last updated: September 2022 DistilBERT model with on 9 newsgroup datasets for the Nepali language with 95.475% accuracy. ## Model Details patrakar is a DistilBERT pre-trained sequence classification transformer model which classifies Nepali language news into 9 newsgroup category, such as: - politics - opinion - bank - entertainment - economy - health - literature - sports - tourism It is developed by Sahaj Raj Malla to be generally usefuly for general public and so that others could explore them for commercial and scientific purposes. This model was trained on [Sakonii/distilgpt2-nepali](https://huggingface.co/Sakonii/distilgpt2-nepali) model. It achieves the following results on the test dataset: | Total Number of samples | Accuracy(%) |:-------------:|:---------------: | 5670 | 95.475 ### Model date September 2022 ### Model type Sequence classification model ### Model version 1.0.0 ## Model Usage This model can be used directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python from transformers import pipeline, set_seed set_seed(42) model_name = "sahajrajmalla/patrakar" classifier = pipeline('text-classification', model=model_name) text = "नेकपा (एमाले)का नेता गोकर्णराज विष्टले सहमति र सहकार्यबाटै संविधान बनाउने तथा जनताको जीवनस्तर उकास्ने काम गर्नु नै अबको मुख्य काम रहेको बताएका छन् ।" classifier(text) ``` Here is how we can use the model to get the features of a given text in PyTorch: ```python !pip install transformers pytorch from transformers import AutoTokenizer from transformers import AutoModelForSequenceClassification import torch import torch.nn.functional as F # initializing model and tokenizer model_name = "sahajrajmalla/patrakar" # downloading tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) # downloading model model = AutoModelForSequenceClassification.from_pretrained(model_name) def tokenize_function(examples): return tokenizer(examples["data"], padding="max_length", truncation=True) # predicting with the model word_i_want_to_predict = "राजनीतिक स्थिरता नहुँदा विकास निर्माणले गति लिन सकेन" # initializing our labels label_list = [ "bank", "economy", "entertainment", "health", "literature", "opinion", "politics", "sports", "tourism" ] batch = tokenizer(word_i_want_to_predict, padding=True, truncation=True, max_length=512, return_tensors='pt') with torch.no_grad(): outputs = model(**batch) predictions = F.softmax(outputs.logits, dim=1) labels = torch.argmax(predictions, dim=1) print(f"The sequence: \n\n {word_i_want_to_predict} \n\n is predicted to be of newsgroup {label_list[labels.item()]}") ``` ## Training data This model is trained on 50,945 rows of Nepali language news grouped [dataset](https://www.kaggle.com/competitions/text-it-meet-22/data?select=train.csv) found on Kaggle which was also used in IT Meet 2022 Text challenge. ## ## Framework versions - Transformers 4.20.1 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.11.6