--- language: bn tags: - bert - bengali - bengali-lm - bangla license: MIT datasets: - common_crawl - wikipedia - oscar --- # Bangla BERT Base A long way passed. Here is our **Bangla-Bert**! It is now available in huggingface model hub. [Bangla-Bert-Base](https://github.com/sagorbrur/bangla-bert) is a pretrained language model of Bengali language using mask language modeling described in [BERT](https://arxiv.org/abs/1810.04805) and it's github [repository](https://github.com/google-research/bert) ## Pretrain Corpus Details Corpus was downloaded from two main sources: * Bengali commoncrawl corpus downloaded from [OSCAR](https://oscar-corpus.com/) * [Bengali Wikipedia Dump Dataset](https://dumps.wikimedia.org/bnwiki/latest/) After downloading these corpora, we preprocessed it as a Bert format. which is one sentence per line and an extra newline for new documents. ``` sentence 1 sentence 2 sentence 1 sentence 2 ``` ## Building Vocab We used [BNLP](https://github.com/sagorbrur/bnlp) package for training bengali sentencepiece model with vocab size 102025. We preprocess the output vocab file as Bert format. Our final vocab file availabe at [https://github.com/sagorbrur/bangla-bert](https://github.com/sagorbrur/bangla-bert) and also at [huggingface](https://huggingface.co/sagorsarker/bangla-bert-base) model hub. ## Training Details * Bangla-Bert was trained with code provided in Google BERT's github repository (https://github.com/google-research/bert) * Currently released model follows bert-base-uncased model architecture (12-layer, 768-hidden, 12-heads, 110M parameters) * Total Training Steps: 1 Million * The model was trained on a single Google Cloud TPU ## Evaluation Results ### LM Evaluation Results After training 1 million steps here are the evaluation results. ``` global_step = 1000000 loss = 2.2406516 masked_lm_accuracy = 0.60641736 masked_lm_loss = 2.201459 next_sentence_accuracy = 0.98625 next_sentence_loss = 0.040997364 perplexity = numpy.exp(2.2406516) = 9.393331287442784 Loss for final step: 2.426227 ``` ### Downstream Task Evaluation Results - Evaluation on Bengali Classification Benchmark Datasets Huge Thanks to [Nick Doiron](https://twitter.com/mapmeld) for providing evaluation results of the classification task. He used [Bengali Classification Benchmark](https://github.com/rezacsedu/Classification_Benchmarks_Benglai_NLP) datasets for the classification task. Comparing to Nick's [Bengali electra](https://huggingface.co/monsoon-nlp/bangla-electra) and multi-lingual BERT, Bangla BERT Base achieves a state of the art result. Here is the [evaluation script](https://github.com/sagorbrur/bangla-bert/blob/master/notebook/bangla-bert-evaluation-classification-task.ipynb). | Model | Sentiment Analysis | Hate Speech Task | News Topic Task | Average | | ----- | -------------------| ---------------- | --------------- | ------- | | mBERT | 68.15 | 52.32 | 72.27 | 64.25 | | Bengali Electra | 69.19 | 44.84 | 82.33 | 65.45 | | Bangla BERT Base | 70.37 | 71.83 | 89.19 | 77.13 | - Evaluation on [Wikiann](https://huggingface.co/datasets/wikiann) Datasets We evaluated `Bangla-BERT-Base` with [Wikiann](https://huggingface.co/datasets/wikiann) Bengali NER datasets along with another benchmark three models(mBERT, XLM-R, Indic-BERT).
`Bangla-BERT-Base` got a third-place where `mBERT` got first and `XML-R` got second place after training these models 5 epochs. | Base Pre-trained Model | F1 Score | Accuracy | | ----- | -------------------| ---------------- | | [mBERT-uncased](https://huggingface.co/bert-base-multilingual-uncased) | 97.11 | 97.68 | | [XLM-R](https://huggingface.co/xlm-roberta-base) | 96.22 | 97.03 | | [Indic-BERT](https://huggingface.co/ai4bharat/indic-bert)| 92.66 | 94.74 | | Bangla-BERT-Base | 95.57 | 97.49 | All four model trained with [transformers-token-classification](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/token_classification.ipynb) notebook. You can find all models evaluation results [here](https://github.com/sagorbrur/bangla-bert/tree/master/evaluations/wikiann) Also, you can check the below paper list. They used this model on their datasets. * [arXiv:2012.14353](https://arxiv.org/abs/2012.14353) * [arxiv:2104.08613](https://arxiv.org/abs/2104.08613) **NB: If you use this model for any NLP task please share evaluation results with us. We will add it here.** ## How to Use **Bangla BERT Tokenizer** ```py from transformers import AutoTokenizer, AutoModel bnbert_tokenizer = AutoTokenizer.from_pretrained("sagorsarker/bangla-bert-base") text = "আমি বাংলায় গান গাই।" bnbert_tokenizer.tokenize(text) # ['আমি', 'বাংলা', '##য', 'গান', 'গাই', '।'] ``` **MASK Generation** You can use this model directly with a pipeline for masked language modeling: ```py from transformers import BertForMaskedLM, BertTokenizer, pipeline model = BertForMaskedLM.from_pretrained("sagorsarker/bangla-bert-base") tokenizer = BertTokenizer.from_pretrained("sagorsarker/bangla-bert-base") nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer) for pred in nlp(f"আমি বাংলায় {nlp.tokenizer.mask_token} গাই।"): print(pred) # {'sequence': '[CLS] আমি বাংলায গান গাই । [SEP]', 'score': 0.13404667377471924, 'token': 2552, 'token_str': 'গান'} ``` ## Author [Sagor Sarker](https://github.com/sagorbrur) ## Acknowledgements * Thanks to Google [TensorFlow Research Cloud (TFRC)](https://www.tensorflow.org/tfrc) for providing the free TPU credits - thank you! * Thank to all the people around, who always helping us to build something for Bengali. ## Reference * https://github.com/google-research/bert ## Citation If you find this model helpful, please cite. ``` @misc{Sagor_2020, title = {BanglaBERT: Bengali Mask Language Model for Bengali Language Understading}, author = {Sagor Sarker}, year = {2020}, url = {https://github.com/sagorbrur/bangla-bert} } ```