Update README.md
Browse files
README.md
CHANGED
@@ -13,10 +13,15 @@ base_model:
|
|
13 |
- FacebookAI/xlm-roberta-base
|
14 |
---
|
15 |
|
|
|
|
|
|
|
|
|
16 |
XLM-Roberta-based classifier trained on [XFORMAL](https://aclanthology.org/2021.naacl-main.256.bib) -- a multilingual formality classification dataset.
|
17 |
|
18 |
|
19 |
-
|
|
|
20 |
|
21 |
| | precision | recall | f1-score | support |
|
22 |
|--------------|-----------|----------|----------|---------|
|
@@ -27,7 +32,7 @@ all languages
|
|
27 |
| weighted avg | 0.813068 | 0.794405 | 0.789337 | 204864 |
|
28 |
|
29 |
|
30 |
-
|
31 |
|
32 |
| | precision | recall | f1-score | support |
|
33 |
|--------------|-----------|----------|----------|---------|
|
@@ -37,7 +42,7 @@ en
|
|
37 |
| macro avg | 0.872579 | 0.844440 | 0.847556 | 41600 |
|
38 |
| weighted avg | 0.867869 | 0.852139 | 0.849273 | 41600 |
|
39 |
|
40 |
-
|
41 |
|
42 |
| | precision | recall | f1-score | support |
|
43 |
|--------------|-----------|----------|----------|---------|
|
@@ -47,7 +52,7 @@ fr
|
|
47 |
| macro avg | 0.817007 | 0.788165 | 0.788686 | 40832 |
|
48 |
| weighted avg | 0.813257 | 0.795504 | 0.790711 | 40832 |
|
49 |
|
50 |
-
|
51 |
|
52 |
| | precision | recall | f1-score | support |
|
53 |
|--------------|-----------|----------|----------|---------|
|
@@ -57,7 +62,7 @@ it
|
|
57 |
| macro avg | 0.793084 | 0.760902 | 0.759995 | 40896 |
|
58 |
| weighted avg | 0.789292 | 0.769024 | 0.762454 | 40896 |
|
59 |
|
60 |
-
|
61 |
|
62 |
| | precision | recall | f1-score | support |
|
63 |
|--------------|-----------|----------|----------|---------|
|
|
|
13 |
- FacebookAI/xlm-roberta-base
|
14 |
---
|
15 |
|
16 |
+
**Model Overview**
|
17 |
+
|
18 |
+
This is the model presented in the paper ["Detecting Text Formality: A Study of Text Classification Approaches"](https://aclanthology.org/2023.ranlp-1.31/).
|
19 |
+
|
20 |
XLM-Roberta-based classifier trained on [XFORMAL](https://aclanthology.org/2021.naacl-main.256.bib) -- a multilingual formality classification dataset.
|
21 |
|
22 |
|
23 |
+
**Results**
|
24 |
+
All languages
|
25 |
|
26 |
| | precision | recall | f1-score | support |
|
27 |
|--------------|-----------|----------|----------|---------|
|
|
|
32 |
| weighted avg | 0.813068 | 0.794405 | 0.789337 | 204864 |
|
33 |
|
34 |
|
35 |
+
EN
|
36 |
|
37 |
| | precision | recall | f1-score | support |
|
38 |
|--------------|-----------|----------|----------|---------|
|
|
|
42 |
| macro avg | 0.872579 | 0.844440 | 0.847556 | 41600 |
|
43 |
| weighted avg | 0.867869 | 0.852139 | 0.849273 | 41600 |
|
44 |
|
45 |
+
FR
|
46 |
|
47 |
| | precision | recall | f1-score | support |
|
48 |
|--------------|-----------|----------|----------|---------|
|
|
|
52 |
| macro avg | 0.817007 | 0.788165 | 0.788686 | 40832 |
|
53 |
| weighted avg | 0.813257 | 0.795504 | 0.790711 | 40832 |
|
54 |
|
55 |
+
IT
|
56 |
|
57 |
| | precision | recall | f1-score | support |
|
58 |
|--------------|-----------|----------|----------|---------|
|
|
|
62 |
| macro avg | 0.793084 | 0.760902 | 0.759995 | 40896 |
|
63 |
| weighted avg | 0.789292 | 0.769024 | 0.762454 | 40896 |
|
64 |
|
65 |
+
PT
|
66 |
|
67 |
| | precision | recall | f1-score | support |
|
68 |
|--------------|-----------|----------|----------|---------|
|