Upload 11 files
Browse files- Paligemma 3B Added Tokens.json +3 -0
- Paligemma 3B Index.json +610 -0
- Paligemma 3B PT 224 README.md +845 -0
- Paligemma 3B PT 224 gitattributes +36 -0
- Paligemma Preprocessor Config.json +40 -0
- Special Tokens Map.json +33 -0
- paligemma-3b-pt-224 config (1).json +40 -0
- paligemma-3b-pt-224 config.json +7 -0
Paligemma 3B Added Tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<image>": 257152
|
3 |
+
}
|
Paligemma 3B Index.json
ADDED
@@ -0,0 +1,610 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 11693865920
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"language_model.model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
7 |
+
"language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"language_model.model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
26 |
+
"language_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
27 |
+
"language_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
28 |
+
"language_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
29 |
+
"language_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
30 |
+
"language_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
31 |
+
"language_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
32 |
+
"language_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
33 |
+
"language_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
34 |
+
"language_model.model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
35 |
+
"language_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
36 |
+
"language_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
37 |
+
"language_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
38 |
+
"language_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
39 |
+
"language_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
40 |
+
"language_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
41 |
+
"language_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
42 |
+
"language_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
43 |
+
"language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
44 |
+
"language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
45 |
+
"language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
47 |
+
"language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
48 |
+
"language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
49 |
+
"language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
50 |
+
"language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
52 |
+
"language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"language_model.model.layers.14.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
62 |
+
"language_model.model.layers.14.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
63 |
+
"language_model.model.layers.14.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
64 |
+
"language_model.model.layers.14.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
65 |
+
"language_model.model.layers.14.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
66 |
+
"language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"language_model.model.layers.14.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
68 |
+
"language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"language_model.model.layers.15.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
71 |
+
"language_model.model.layers.15.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
72 |
+
"language_model.model.layers.15.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
73 |
+
"language_model.model.layers.15.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
74 |
+
"language_model.model.layers.15.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
75 |
+
"language_model.model.layers.15.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
76 |
+
"language_model.model.layers.15.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
77 |
+
"language_model.model.layers.15.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
78 |
+
"language_model.model.layers.15.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
79 |
+
"language_model.model.layers.16.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
80 |
+
"language_model.model.layers.16.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
81 |
+
"language_model.model.layers.16.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
82 |
+
"language_model.model.layers.16.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
83 |
+
"language_model.model.layers.16.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
84 |
+
"language_model.model.layers.16.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
85 |
+
"language_model.model.layers.16.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
86 |
+
"language_model.model.layers.16.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
87 |
+
"language_model.model.layers.16.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
88 |
+
"language_model.model.layers.17.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
89 |
+
"language_model.model.layers.17.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
90 |
+
"language_model.model.layers.17.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
91 |
+
"language_model.model.layers.17.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
92 |
+
"language_model.model.layers.17.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
93 |
+
"language_model.model.layers.17.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
94 |
+
"language_model.model.layers.17.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
95 |
+
"language_model.model.layers.17.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
96 |
+
"language_model.model.layers.17.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
97 |
+
"language_model.model.layers.2.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"language_model.model.layers.2.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
100 |
+
"language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
101 |
+
"language_model.model.layers.2.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
103 |
+
"language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
104 |
+
"language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
105 |
+
"language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
106 |
+
"language_model.model.layers.3.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"language_model.model.layers.3.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"language_model.model.layers.3.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
109 |
+
"language_model.model.layers.3.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"language_model.model.layers.3.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"language_model.model.layers.3.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
112 |
+
"language_model.model.layers.3.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"language_model.model.layers.3.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
114 |
+
"language_model.model.layers.3.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"language_model.model.layers.4.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"language_model.model.layers.4.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
117 |
+
"language_model.model.layers.4.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
118 |
+
"language_model.model.layers.4.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
119 |
+
"language_model.model.layers.4.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
120 |
+
"language_model.model.layers.4.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
121 |
+
"language_model.model.layers.4.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
122 |
+
"language_model.model.layers.4.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
123 |
+
"language_model.model.layers.4.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
124 |
+
"language_model.model.layers.5.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
125 |
+
"language_model.model.layers.5.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
126 |
+
"language_model.model.layers.5.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"language_model.model.layers.5.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"language_model.model.layers.5.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"language_model.model.layers.5.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"language_model.model.layers.5.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"language_model.model.layers.5.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
132 |
+
"language_model.model.layers.5.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
133 |
+
"language_model.model.layers.6.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
134 |
+
"language_model.model.layers.6.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
135 |
+
"language_model.model.layers.6.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
136 |
+
"language_model.model.layers.6.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
137 |
+
"language_model.model.layers.6.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
138 |
+
"language_model.model.layers.6.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"language_model.model.layers.6.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
140 |
+
"language_model.model.layers.6.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"language_model.model.layers.6.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"language_model.model.layers.7.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
143 |
+
"language_model.model.layers.7.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
144 |
+
"language_model.model.layers.7.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
145 |
+
"language_model.model.layers.7.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
146 |
+
"language_model.model.layers.7.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
147 |
+
"language_model.model.layers.7.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
148 |
+
"language_model.model.layers.7.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
149 |
+
"language_model.model.layers.7.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
150 |
+
"language_model.model.layers.7.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"language_model.model.layers.8.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
152 |
+
"language_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
153 |
+
"language_model.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
154 |
+
"language_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
155 |
+
"language_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
156 |
+
"language_model.model.layers.8.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
157 |
+
"language_model.model.layers.8.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
158 |
+
"language_model.model.layers.8.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
159 |
+
"language_model.model.layers.8.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
160 |
+
"language_model.model.layers.9.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
161 |
+
"language_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
162 |
+
"language_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
163 |
+
"language_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
164 |
+
"language_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
165 |
+
"language_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
166 |
+
"language_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
167 |
+
"language_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
168 |
+
"language_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
169 |
+
"language_model.model.norm.weight": "model-00003-of-00003.safetensors",
|
170 |
+
"multi_modal_projector.linear.bias": "model-00001-of-00003.safetensors",
|
171 |
+
"multi_modal_projector.linear.weight": "model-00001-of-00003.safetensors",
|
172 |
+
"vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00001-of-00003.safetensors",
|
173 |
+
"vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00003.safetensors",
|
174 |
+
"vision_tower.vision_model.embeddings.position_embedding.weight": "model-00001-of-00003.safetensors",
|
175 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
176 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
177 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
178 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
179 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
180 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
181 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
182 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
183 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
184 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
185 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
186 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
187 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
188 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
189 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
190 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
191 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
192 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
193 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
194 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
195 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
196 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
197 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
198 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
199 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
200 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
201 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
202 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
203 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
204 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
205 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
206 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
207 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
208 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
209 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
210 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
211 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
212 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
213 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
214 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
215 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
216 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
217 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
218 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
219 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
220 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
221 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
222 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
223 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
224 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
225 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
226 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
227 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
228 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
229 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
230 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
231 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
232 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
233 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
234 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
235 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
236 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
237 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
238 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
239 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
240 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
241 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
242 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
243 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
244 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
245 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
246 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
247 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
248 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
249 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
250 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
251 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
252 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
253 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
254 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
255 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
256 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
257 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
258 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
259 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
260 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
261 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
262 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
263 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
264 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
265 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
266 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
267 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
268 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
269 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
270 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
271 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
272 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
273 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
274 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
275 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
276 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
277 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
278 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
279 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
280 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
281 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
282 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
283 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
284 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
285 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
286 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
287 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
288 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
289 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
290 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
291 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
292 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
293 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
294 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
295 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
296 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
297 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
298 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
299 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
300 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
301 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
302 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
303 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
304 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
305 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
306 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
307 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
308 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
309 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
310 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
311 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
312 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
313 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
314 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
315 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
316 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
317 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
318 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
319 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
320 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
321 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
322 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
323 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
324 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
325 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
326 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
327 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
328 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
329 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
330 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
331 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
332 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
333 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
334 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
335 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
336 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
337 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
338 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
339 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
340 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
341 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
342 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
343 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
344 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
345 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
346 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
347 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
348 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
349 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
350 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
351 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
352 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
353 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
354 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
355 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
356 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
357 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
358 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
359 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
360 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
361 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
362 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
363 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
364 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
365 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
366 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
367 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
368 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
369 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
370 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
371 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
372 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
373 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
374 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
375 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
376 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
377 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
378 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
379 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
380 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
381 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
382 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
383 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
384 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
385 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
386 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
387 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
388 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
389 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
390 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
391 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
392 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
393 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
394 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
395 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
396 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
397 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
398 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
399 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
400 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
401 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
402 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
403 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
404 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
405 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
406 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
407 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
408 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
409 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
410 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
411 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
412 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
413 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
414 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
415 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
416 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
417 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
418 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
419 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
420 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
421 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
422 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
423 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
424 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
425 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
426 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
427 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
428 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
429 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
430 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
431 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
432 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
433 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
434 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
435 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
436 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
437 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
438 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
439 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
440 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
441 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
442 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
443 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
444 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
445 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
446 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
447 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
448 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
449 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
450 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
451 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
452 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
453 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
454 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
455 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
456 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
457 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
458 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
459 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
460 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
461 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
462 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
463 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
464 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
465 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
466 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
467 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
468 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
469 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
470 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
471 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
472 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
473 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
474 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
475 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
476 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
477 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
478 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
479 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
480 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
481 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
482 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
483 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
484 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
485 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
486 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
487 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
488 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
489 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
490 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
491 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
492 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
493 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
494 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
495 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
496 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
497 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
498 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
499 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
500 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
501 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
502 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
503 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
504 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
505 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
506 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
507 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
508 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
509 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
510 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
511 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
512 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
513 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
514 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
515 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
516 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
517 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
518 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
519 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
520 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
521 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
522 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
523 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
524 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
525 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
526 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
527 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
528 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
529 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
530 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
531 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
532 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
533 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
534 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
535 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
536 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
537 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
538 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
539 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
540 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
541 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
542 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
543 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
544 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
545 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
546 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
547 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
548 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
549 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
550 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
551 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
552 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
553 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
554 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
555 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
556 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
557 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
558 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
559 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
560 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
561 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
562 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
563 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
564 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
565 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
566 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
567 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
568 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
569 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
570 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
571 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
572 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
573 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
574 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
575 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
576 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
577 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
578 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
579 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
580 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
581 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
582 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
583 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
584 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
585 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
586 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
587 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
588 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
589 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
590 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
591 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00003.safetensors",
|
592 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00003.safetensors",
|
593 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00003.safetensors",
|
594 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00003.safetensors",
|
595 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
596 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
597 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
598 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
599 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
600 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
601 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
|
602 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
603 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
604 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
605 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
606 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
607 |
+
"vision_tower.vision_model.post_layernorm.bias": "model-00001-of-00003.safetensors",
|
608 |
+
"vision_tower.vision_model.post_layernorm.weight": "model-00001-of-00003.safetensors"
|
609 |
+
}
|
610 |
+
}
|
Paligemma 3B PT 224 README.md
ADDED
@@ -0,0 +1,845 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: gemma
|
3 |
+
library_name: transformers
|
4 |
+
extra_gated_heading: Access PaliGemma on Hugging Face
|
5 |
+
extra_gated_prompt: To access PaliGemma on Hugging Face, you’re required to review
|
6 |
+
and agree to Google’s usage license. To do this, please ensure you’re logged-in
|
7 |
+
to Hugging Face and click below. Requests are processed immediately.
|
8 |
+
extra_gated_button_content: Acknowledge license
|
9 |
+
pipeline_tag: image-text-to-text
|
10 |
+
---
|
11 |
+
# PaliGemma model card
|
12 |
+
|
13 |
+
**Model page:** [PaliGemma](https://ai.google.dev/gemma/docs/paligemma)
|
14 |
+
|
15 |
+
Transformers PaliGemma 3B weights, pre-trained with 224*224 input images and 128 token input/output text sequences. The models are available in float32, bfloat16 and float16 formats for fine-tuning.
|
16 |
+
|
17 |
+
**Resources and technical documentation:**
|
18 |
+
|
19 |
+
* [Responsible Generative AI Toolkit](https://ai.google.dev/responsible)
|
20 |
+
* [PaliGemma on Kaggle](https://www.kaggle.com/models/google/paligemma)
|
21 |
+
* [PaliGemma on Vertex Model Garden](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/363)
|
22 |
+
|
23 |
+
**Terms of Use:** [Terms](https://ai.google.dev/gemma/terms)
|
24 |
+
|
25 |
+
**Authors:** Google
|
26 |
+
|
27 |
+
## Model information
|
28 |
+
|
29 |
+
### Model summary
|
30 |
+
|
31 |
+
#### Description
|
32 |
+
|
33 |
+
PaliGemma is a versatile and lightweight vision-language model (VLM) inspired by
|
34 |
+
[PaLI-3](https://arxiv.org/abs/2310.09199) and based on open components such as
|
35 |
+
the [SigLIP vision model](https://arxiv.org/abs/2303.15343) and the [Gemma
|
36 |
+
language model](https://arxiv.org/abs/2403.08295). It takes both image and text
|
37 |
+
as input and generates text as output, supporting multiple languages. It is designed for class-leading fine-tune performance on a wide range of vision-language tasks such as image and short video caption, visual question answering, text reading, object detection and object segmentation.
|
38 |
+
|
39 |
+
#### Model architecture
|
40 |
+
|
41 |
+
PaliGemma is the composition of a [Transformer
|
42 |
+
decoder](https://arxiv.org/abs/1706.03762) and a [Vision Transformer image
|
43 |
+
encoder](https://arxiv.org/abs/2010.11929), with a total of 3 billion
|
44 |
+
params. The text decoder is initialized from
|
45 |
+
[Gemma-2B](https://www.kaggle.com/models/google/gemma). The image encoder is
|
46 |
+
initialized from
|
47 |
+
[SigLIP-So400m/14](https://colab.research.google.com/github/google-research/big_vision/blob/main/big_vision/configs/proj/image_text/SigLIP_demo.ipynb).
|
48 |
+
PaliGemma is trained following the PaLI-3 recipes.
|
49 |
+
|
50 |
+
#### Inputs and outputs
|
51 |
+
|
52 |
+
* **Input:** Image and text string, such as a prompt to caption the image, or
|
53 |
+
a question.
|
54 |
+
* **Output:** Generated text in response to the input, such as a caption of
|
55 |
+
the image, an answer to a question, a list of object bounding box
|
56 |
+
coordinates, or segmentation codewords.
|
57 |
+
|
58 |
+
### Model data
|
59 |
+
|
60 |
+
#### Pre-train datasets
|
61 |
+
|
62 |
+
PaliGemma is pre-trained on the following mixture of datasets:
|
63 |
+
|
64 |
+
* **WebLI:** [WebLI (Web Language Image)](https://arxiv.org/abs/2209.06794) is
|
65 |
+
a web-scale multilingual image-text dataset built from the public web. A
|
66 |
+
wide range of WebLI splits are used to acquire versatile model capabilities,
|
67 |
+
such as visual semantic understanding, object localization,
|
68 |
+
visually-situated text understanding, multilinguality, etc.
|
69 |
+
* **CC3M-35L:** Curated English image-alt_text pairs from webpages ([Sharma et
|
70 |
+
al., 2018](https://aclanthology.org/P18-1238/)). We used the [Google Cloud
|
71 |
+
Translation API](https://cloud.google.com/translate) to translate into 34
|
72 |
+
additional languages.
|
73 |
+
* **VQ²A-CC3M-35L/VQG-CC3M-35L:** A subset of VQ2A-CC3M ([Changpinyo et al.,
|
74 |
+
2022a](https://aclanthology.org/2022.naacl-main.142/)), translated into the
|
75 |
+
same additional 34 languages as CC3M-35L, using the [Google Cloud
|
76 |
+
Translation API](https://cloud.google.com/translate).
|
77 |
+
* **OpenImages:** Detection and object-aware questions and answers
|
78 |
+
([Piergiovanni et al. 2022](https://arxiv.org/abs/2209.04372)) generated by
|
79 |
+
handcrafted rules on the [OpenImages dataset].
|
80 |
+
* **WIT:** Images and texts collected from Wikipedia ([Srinivasan et al.,
|
81 |
+
2021](https://arxiv.org/abs/2103.01913)).
|
82 |
+
|
83 |
+
[OpenImages dataset]: https://storage.googleapis.com/openimages/web/factsfigures_v7.html
|
84 |
+
|
85 |
+
#### Data responsibility filtering
|
86 |
+
|
87 |
+
The following filters are applied to WebLI, with the goal of training PaliGemma
|
88 |
+
on clean data:
|
89 |
+
|
90 |
+
* **Pornographic image filtering:** This filter removes images deemed to be of
|
91 |
+
pornographic nature.
|
92 |
+
* **Text safety filtering:** We identify and filter out images that are paired
|
93 |
+
with unsafe text. Unsafe text is any text deemed to contain or be about
|
94 |
+
CSAI, pornography, vulgarities, or otherwise offensive.
|
95 |
+
* **Text toxicity filtering:** We further use the [Perspective
|
96 |
+
API](https://perspectiveapi.com/) to identify and filter out images that are
|
97 |
+
paired with text deemed insulting, obscene, hateful or otherwise toxic.
|
98 |
+
* **Text personal information filtering:** We filtered certain personal information and other sensitive data using [Cloud Data Loss Prevention (DLP)
|
99 |
+
API](https://cloud.google.com/security/products/dlp) to protect the privacy
|
100 |
+
of individuals. Identifiers such as social security numbers and [other sensitive information types] were removed.
|
101 |
+
* **Additional methods:** Filtering based on content quality and safety in
|
102 |
+
line with our policies and practices.
|
103 |
+
|
104 |
+
[other sensitive information types]: https://cloud.google.com/sensitive-data-protection/docs/high-sensitivity-infotypes-reference?_gl=1*jg604m*_ga*ODk5MzA3ODQyLjE3MTAzMzQ3NTk.*_ga_WH2QY8WWF5*MTcxMDUxNTkxMS4yLjEuMTcxMDUxNjA2NC4wLjAuMA..&_ga=2.172110058.-899307842.1710334759
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
## How to Use
|
109 |
+
|
110 |
+
PaliGemma is a single-turn vision language model not meant for conversational use,
|
111 |
+
and it works best when fine-tuning to a specific use case.
|
112 |
+
|
113 |
+
You can configure which task the model will solve by conditioning it with task prefixes,
|
114 |
+
such as “detect” or “segment”. The pretrained models were trained in this fashion to imbue
|
115 |
+
them with a rich set of capabilities (question answering, captioning, segmentation, etc.).
|
116 |
+
However, they are not designed to be used directly, but to be transferred (by fine-tuning)
|
117 |
+
to specific tasks using a similar prompt structure. For interactive testing, you can use
|
118 |
+
the "mix" family of models, which have been fine-tuned on a mixture of tasks. To see model
|
119 |
+
[google/paligemma-3b-mix-448](https://huggingface.co/google/paligemma-3b-mix-448) in action,
|
120 |
+
check [this Space that uses the Transformers codebase](https://huggingface.co/spaces/big-vision/paligemma-hf).
|
121 |
+
|
122 |
+
Please, refer to the [usage and limitations section](#usage-and-limitations) for intended
|
123 |
+
use cases, or visit the [blog post](https://huggingface.co/blog/paligemma-google-vlm) for
|
124 |
+
additional details and examples.
|
125 |
+
|
126 |
+
## Use in Transformers
|
127 |
+
|
128 |
+
The following snippets use model `google/paligemma-3b-mix-224` for reference purposes.
|
129 |
+
The model in this repo you are now browsing may have been trained for other tasks, please
|
130 |
+
make sure you use appropriate inputs for the task at hand.
|
131 |
+
|
132 |
+
### Running the default precision (`float32`) on CPU
|
133 |
+
|
134 |
+
```python
|
135 |
+
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
136 |
+
from PIL import Image
|
137 |
+
import requests
|
138 |
+
import torch
|
139 |
+
|
140 |
+
model_id = "google/paligemma-3b-mix-224"
|
141 |
+
|
142 |
+
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
|
143 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
144 |
+
|
145 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).eval()
|
146 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
147 |
+
|
148 |
+
# Instruct the model to create a caption in Spanish
|
149 |
+
prompt = "caption es"
|
150 |
+
model_inputs = processor(text=prompt, images=image, return_tensors="pt")
|
151 |
+
input_len = model_inputs["input_ids"].shape[-1]
|
152 |
+
|
153 |
+
with torch.inference_mode():
|
154 |
+
generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False)
|
155 |
+
generation = generation[0][input_len:]
|
156 |
+
decoded = processor.decode(generation, skip_special_tokens=True)
|
157 |
+
print(decoded)
|
158 |
+
```
|
159 |
+
|
160 |
+
Output: `Un auto azul estacionado frente a un edificio.`
|
161 |
+
|
162 |
+
### Running other precisions on CUDA
|
163 |
+
|
164 |
+
For convenience, the repos contain revisions of the weights already converted to `bfloat16` and `float16`,
|
165 |
+
so you can use them to reduce the download size and avoid casting on your local computer.
|
166 |
+
|
167 |
+
This is how you'd run `bfloat16` on an nvidia CUDA card.
|
168 |
+
|
169 |
+
```python
|
170 |
+
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
171 |
+
from PIL import Image
|
172 |
+
import requests
|
173 |
+
import torch
|
174 |
+
|
175 |
+
model_id = "google/paligemma-3b-mix-224"
|
176 |
+
device = "cuda:0"
|
177 |
+
dtype = torch.bfloat16
|
178 |
+
|
179 |
+
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
|
180 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
181 |
+
|
182 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(
|
183 |
+
model_id,
|
184 |
+
torch_dtype=dtype,
|
185 |
+
device_map=device,
|
186 |
+
revision="bfloat16",
|
187 |
+
).eval()
|
188 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
189 |
+
|
190 |
+
# Instruct the model to create a caption in Spanish
|
191 |
+
prompt = "caption es"
|
192 |
+
model_inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device)
|
193 |
+
input_len = model_inputs["input_ids"].shape[-1]
|
194 |
+
|
195 |
+
with torch.inference_mode():
|
196 |
+
generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False)
|
197 |
+
generation = generation[0][input_len:]
|
198 |
+
decoded = processor.decode(generation, skip_special_tokens=True)
|
199 |
+
print(decoded)
|
200 |
+
```
|
201 |
+
|
202 |
+
### Loading in 4-bit / 8-bit
|
203 |
+
|
204 |
+
You need to install `bitsandbytes` to automatically run inference using 8-bit or 4-bit precision:
|
205 |
+
|
206 |
+
```
|
207 |
+
pip install bitsandbytes accelerate
|
208 |
+
```
|
209 |
+
|
210 |
+
```
|
211 |
+
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
212 |
+
from PIL import Image
|
213 |
+
import requests
|
214 |
+
import torch
|
215 |
+
|
216 |
+
model_id = "google/paligemma-3b-mix-224"
|
217 |
+
device = "cuda:0"
|
218 |
+
dtype = torch.bfloat16
|
219 |
+
|
220 |
+
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
|
221 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
222 |
+
|
223 |
+
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
224 |
+
|
225 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(
|
226 |
+
model_id, quantization_config=quantization_config
|
227 |
+
).eval()
|
228 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
229 |
+
|
230 |
+
# Instruct the model to create a caption in Spanish
|
231 |
+
prompt = "caption es"
|
232 |
+
model_inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device)
|
233 |
+
input_len = model_inputs["input_ids"].shape[-1]
|
234 |
+
|
235 |
+
with torch.inference_mode():
|
236 |
+
generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False)
|
237 |
+
generation = generation[0][input_len:]
|
238 |
+
decoded = processor.decode(generation, skip_special_tokens=True)
|
239 |
+
print(decoded)
|
240 |
+
```
|
241 |
+
|
242 |
+
## Implementation information
|
243 |
+
|
244 |
+
### Hardware
|
245 |
+
|
246 |
+
PaliGemma was trained using the latest generation of Tensor Processing Unit
|
247 |
+
(TPU) hardware (TPUv5e).
|
248 |
+
|
249 |
+
### Software
|
250 |
+
|
251 |
+
Training was done using [JAX](https://github.com/google/jax),
|
252 |
+
[Flax](https://github.com/google/flax),
|
253 |
+
[TFDS](https://github.com/tensorflow/datasets) and
|
254 |
+
[`big_vision`](https://github.com/google-research/big_vision).
|
255 |
+
|
256 |
+
JAX allows researchers to take advantage of the latest generation of hardware,
|
257 |
+
including TPUs, for faster and more efficient training of large models.
|
258 |
+
|
259 |
+
TFDS is used to access datasets and Flax is used for model architecture. The
|
260 |
+
PaliGemma fine-tune code and inference code are released in the `big_vision`
|
261 |
+
GitHub repository.
|
262 |
+
|
263 |
+
## Evaluation information
|
264 |
+
|
265 |
+
### Benchmark results
|
266 |
+
|
267 |
+
In order to verify the transferability of PaliGemma to a wide variety of
|
268 |
+
academic tasks, we fine-tune the pretrained models on each task. Additionally we
|
269 |
+
train the mix model with a mixture of the transfer tasks. We report results on
|
270 |
+
different resolutions to provide an impression of which tasks benefit from
|
271 |
+
increased resolution. Importantly, none of these tasks or datasets are part of
|
272 |
+
the pretraining data mixture, and their images are explicitly removed from the
|
273 |
+
web-scale pre-training data.
|
274 |
+
|
275 |
+
#### Single task (fine-tune on single task)
|
276 |
+
|
277 |
+
<table>
|
278 |
+
<tbody><tr>
|
279 |
+
<th>Benchmark<br>(train split)</th>
|
280 |
+
<th>Metric<br>(split)</th>
|
281 |
+
<th>pt-224</th>
|
282 |
+
<th>pt-448</th>
|
283 |
+
<th>pt-896</th>
|
284 |
+
</tr>
|
285 |
+
<tr>
|
286 |
+
<th>Captioning</th>
|
287 |
+
</tr>
|
288 |
+
<tr>
|
289 |
+
<td>
|
290 |
+
<a href="https://cocodataset.org/#home">COCO captions</a><br>(train+restval)
|
291 |
+
</td>
|
292 |
+
<td>CIDEr (val)</td>
|
293 |
+
<td>141.92</td>
|
294 |
+
<td>144.60</td>
|
295 |
+
</tr>
|
296 |
+
<tr>
|
297 |
+
<td>
|
298 |
+
<a href="https://nocaps.org/">NoCaps</a><br>(Eval of COCO<br>captions transfer)
|
299 |
+
</td>
|
300 |
+
<td>CIDEr (val)</td>
|
301 |
+
<td>121.72</td>
|
302 |
+
<td>123.58</td>
|
303 |
+
</tr>
|
304 |
+
<tr>
|
305 |
+
<td>
|
306 |
+
<a href="https://arxiv.org/pdf/2205.12522">COCO-35L</a><br>(train)
|
307 |
+
</td>
|
308 |
+
<td>CIDEr dev<br>(en/avg-34/avg)</td>
|
309 |
+
<td>
|
310 |
+
139.2<br>
|
311 |
+
115.8<br>
|
312 |
+
116.4
|
313 |
+
</td>
|
314 |
+
<td>
|
315 |
+
141.2<br>
|
316 |
+
118.0<br>
|
317 |
+
118.6
|
318 |
+
</td>
|
319 |
+
</tr>
|
320 |
+
<tr>
|
321 |
+
<td>
|
322 |
+
<a href="https://arxiv.org/pdf/2205.12522">XM3600</a><br>(Eval of COCO-35L transfer)
|
323 |
+
</td>
|
324 |
+
<td>CIDEr dev<br>(en/avg-34/avg)</td>
|
325 |
+
<td>
|
326 |
+
78.1<br>
|
327 |
+
41.3<br>
|
328 |
+
42.4
|
329 |
+
</td>
|
330 |
+
<td>
|
331 |
+
80.0<br>
|
332 |
+
41.9<br>
|
333 |
+
42.9
|
334 |
+
</td>
|
335 |
+
</tr>
|
336 |
+
<tr>
|
337 |
+
<td>
|
338 |
+
<a href="https://textvqa.org/textcaps/">TextCaps</a><br>(train)
|
339 |
+
</td>
|
340 |
+
<td>CIDEr (val)</td>
|
341 |
+
<td>127.48</td>
|
342 |
+
<td>153.94</td>
|
343 |
+
</tr>
|
344 |
+
<tr>
|
345 |
+
<td>
|
346 |
+
<a href="https://arxiv.org/abs/2110.11624">SciCap</a><br>(first sentence, no subfigure)<br>(train+val)
|
347 |
+
</td>
|
348 |
+
<td>CIDEr/BLEU-4<br>(test)</td>
|
349 |
+
<td>
|
350 |
+
162.25<br>
|
351 |
+
0.192<br>
|
352 |
+
</td>
|
353 |
+
<td>
|
354 |
+
181.49<br>
|
355 |
+
0.211<br>
|
356 |
+
</td>
|
357 |
+
</tr>
|
358 |
+
<tr>
|
359 |
+
<td>
|
360 |
+
<a href="https://arxiv.org/abs/2108.03353">Screen2words</a><br>(train+dev)
|
361 |
+
</td>
|
362 |
+
<td>CIDEr (test)</td>
|
363 |
+
<td>117.57</td>
|
364 |
+
<td>119.59</td>
|
365 |
+
</tr>
|
366 |
+
<tr>
|
367 |
+
<td>
|
368 |
+
<a href="https://arxiv.org/abs/2010.04295">Widget Captioning</a><br>(train+dev)
|
369 |
+
</td>
|
370 |
+
<td>CIDEr (test)</td>
|
371 |
+
<td>136.07</td>
|
372 |
+
<td>148.36</td>
|
373 |
+
</tr>
|
374 |
+
<tr>
|
375 |
+
<th>Question answering</th>
|
376 |
+
</tr>
|
377 |
+
<tr>
|
378 |
+
<td>
|
379 |
+
<a href="https://visualqa.org/index.html">VQAv2</a><br>(train+validation)
|
380 |
+
</td>
|
381 |
+
<td>Accuracy<br>(Test server - std)</td>
|
382 |
+
<td>83.19</td>
|
383 |
+
<td>85.64</td>
|
384 |
+
</tr>
|
385 |
+
<tr>
|
386 |
+
<td>
|
387 |
+
<a href="https://arxiv.org/abs/2401.06209">MMVP</a><br>(Eval of VQAv2 transfer)
|
388 |
+
</td>
|
389 |
+
<td>Paired Accuracy</td>
|
390 |
+
<td>47.33</td>
|
391 |
+
<td>45.33</td>
|
392 |
+
</tr>
|
393 |
+
<tr>
|
394 |
+
<td>
|
395 |
+
<a href="https://arxiv.org/abs/2305.10355">POPE</a><br>(Eval of VQAv2 transfer)
|
396 |
+
</td>
|
397 |
+
<td>Accuracy<br>(random/popular/<br>adversarial)</td>
|
398 |
+
<td>
|
399 |
+
87.80<br>
|
400 |
+
85.87<br>
|
401 |
+
84.27
|
402 |
+
</td>
|
403 |
+
<td>
|
404 |
+
88.23<br>
|
405 |
+
86.77<br>
|
406 |
+
85.90
|
407 |
+
</td>
|
408 |
+
</tr>
|
409 |
+
<tr>
|
410 |
+
<td>
|
411 |
+
<a href="https://okvqa.allenai.org/">OKVQA</a><br>(train)
|
412 |
+
</td>
|
413 |
+
<td>Accuracy (val)</td>
|
414 |
+
<td>63.54</td>
|
415 |
+
<td>63.15</td>
|
416 |
+
</tr>
|
417 |
+
<tr>
|
418 |
+
<td>
|
419 |
+
<a href="https://allenai.org/project/a-okvqa/home">A-OKVQA</a> (MC)<br>(train+val)
|
420 |
+
</td>
|
421 |
+
<td>Accuracy<br>(Test server)</td>
|
422 |
+
<td>76.37</td>
|
423 |
+
<td>76.90</td>
|
424 |
+
</tr>
|
425 |
+
<tr>
|
426 |
+
<td>
|
427 |
+
<a href="https://allenai.org/project/a-okvqa/home">A-OKVQA</a> (DA)<br>(train+val)
|
428 |
+
</td>
|
429 |
+
<td>Accuracy<br>(Test server)</td>
|
430 |
+
<td>61.85</td>
|
431 |
+
<td>63.22</td>
|
432 |
+
</tr>
|
433 |
+
<tr>
|
434 |
+
<td>
|
435 |
+
<a href="https://cs.stanford.edu/people/dorarad/gqa/about.html">GQA</a><br>(train_balanced+<br>val_balanced)
|
436 |
+
</td>
|
437 |
+
<td>Accuracy<br>(testdev balanced)</td>
|
438 |
+
<td>65.61</td>
|
439 |
+
<td>67.03</td>
|
440 |
+
</tr>
|
441 |
+
<tr>
|
442 |
+
<td>
|
443 |
+
<a href="https://aclanthology.org/2022.findings-acl.196/">xGQA</a><br>(Eval of GQA transfer)
|
444 |
+
</td>
|
445 |
+
<td>Mean Accuracy<br>(bn, de, en, id,<br>ko, pt, ru, zh)</td>
|
446 |
+
<td>58.37</td>
|
447 |
+
<td>59.07</td>
|
448 |
+
</tr>
|
449 |
+
<tr>
|
450 |
+
<td>
|
451 |
+
<a href="https://lil.nlp.cornell.edu/nlvr/">NLVR2</a><br>(train+dev)
|
452 |
+
</td>
|
453 |
+
<td>Accuracy (test)</td>
|
454 |
+
<td>90.02</td>
|
455 |
+
<td>88.93</td>
|
456 |
+
</tr>
|
457 |
+
<tr>
|
458 |
+
<td>
|
459 |
+
<a href="https://marvl-challenge.github.io/">MaRVL</a><br>(Eval of NLVR2 transfer)
|
460 |
+
</td>
|
461 |
+
<td>Mean Accuracy<br>(test)<br>(id, sw, ta, tr, zh)</td>
|
462 |
+
<td>80.57</td>
|
463 |
+
<td>76.78</td>
|
464 |
+
</tr>
|
465 |
+
<tr>
|
466 |
+
<td>
|
467 |
+
<a href="https://allenai.org/data/diagrams">AI2D</a><br>(train)
|
468 |
+
</td>
|
469 |
+
<td>Accuracy (test)</td>
|
470 |
+
<td>72.12</td>
|
471 |
+
<td>73.28</td>
|
472 |
+
</tr>
|
473 |
+
<tr>
|
474 |
+
<td>
|
475 |
+
<a href="https://scienceqa.github.io/">ScienceQA</a><br>(Img subset, no CoT)<br>(train+val)
|
476 |
+
</td>
|
477 |
+
<td>Accuracy (test)</td>
|
478 |
+
<td>95.39</td>
|
479 |
+
<td>95.93</td>
|
480 |
+
</tr>
|
481 |
+
<tr>
|
482 |
+
<td>
|
483 |
+
<a href="https://zenodo.org/records/6344334">RSVQA-LR</a> (Non numeric)<br>(train+val)
|
484 |
+
</td>
|
485 |
+
<td>Mean Accuracy<br>(test)</td>
|
486 |
+
<td>92.65</td>
|
487 |
+
<td>93.11</td>
|
488 |
+
</tr>
|
489 |
+
<tr>
|
490 |
+
<td>
|
491 |
+
<a href="https://zenodo.org/records/6344367">RSVQA-HR</a> (Non numeric)<br>(train+val)
|
492 |
+
</td>
|
493 |
+
<td>Mean Accuracy<br>(test/test2)</td>
|
494 |
+
<td>
|
495 |
+
92.61<br>
|
496 |
+
90.58
|
497 |
+
</td>
|
498 |
+
<td>
|
499 |
+
92.79<br>
|
500 |
+
90.54
|
501 |
+
</td>
|
502 |
+
</tr>
|
503 |
+
<tr>
|
504 |
+
<td>
|
505 |
+
<a href="https://arxiv.org/abs/2203.10244">ChartQA</a><br>(human+aug)x(train+val)
|
506 |
+
</td>
|
507 |
+
<td>Mean Relaxed<br>Accuracy<br>(test_human,<br>test_aug)</td>
|
508 |
+
<td>57.08</td>
|
509 |
+
<td>71.36</td>
|
510 |
+
</tr>
|
511 |
+
<tr>
|
512 |
+
<td>
|
513 |
+
<a href="https://vizwiz.org/tasks-and-datasets/vqa/">VizWiz VQA</a><br>(train+val)
|
514 |
+
</td>
|
515 |
+
<td>Accuracy<br>(Test server - std)</td>
|
516 |
+
<td>
|
517 |
+
73.7
|
518 |
+
</td>
|
519 |
+
<td>
|
520 |
+
75.52
|
521 |
+
</td>
|
522 |
+
</tr>
|
523 |
+
<tr>
|
524 |
+
<td>
|
525 |
+
<a href="https://arxiv.org/abs/1810.12440">TallyQA</a><br>(train)
|
526 |
+
</td>
|
527 |
+
<td>Accuracy<br>(test_simple/<br>test_complex)</td>
|
528 |
+
<td>
|
529 |
+
81.72<br>
|
530 |
+
69.56
|
531 |
+
</td>
|
532 |
+
<td>
|
533 |
+
84.86<br>
|
534 |
+
72.27
|
535 |
+
</td>
|
536 |
+
</tr>
|
537 |
+
<tr>
|
538 |
+
<td>
|
539 |
+
<a href="https://ocr-vqa.github.io/">OCR-VQA</a><br>(train+val)
|
540 |
+
</td>
|
541 |
+
<td>Accuracy (test)</td>
|
542 |
+
<td>72.32</td>
|
543 |
+
<td>74.61</td>
|
544 |
+
<td>74.93</td>
|
545 |
+
</tr>
|
546 |
+
<tr>
|
547 |
+
<td>
|
548 |
+
<a href="https://textvqa.org/">TextVQA</a><br>(train+val)
|
549 |
+
</td>
|
550 |
+
<td>Accuracy<br>(Test server - std)</td>
|
551 |
+
<td>55.47</td>
|
552 |
+
<td>73.15</td>
|
553 |
+
<td>76.48</td>
|
554 |
+
</tr>
|
555 |
+
<tr>
|
556 |
+
<td>
|
557 |
+
<a href="https://www.docvqa.org/">DocVQA</a><br>(train+val)
|
558 |
+
</td>
|
559 |
+
<td>ANLS (Test server)</td>
|
560 |
+
<td>43.74</td>
|
561 |
+
<td>78.02</td>
|
562 |
+
<td>84.77</td>
|
563 |
+
</tr>
|
564 |
+
<tr>
|
565 |
+
<td>
|
566 |
+
<a href="https://openaccess.thecvf.com/content/WACV2022/papers/Mathew_InfographicVQA_WACV_2022_paper.pdf">Infographic VQA</a><br>(train+val)
|
567 |
+
</td>
|
568 |
+
<td>ANLS (Test server)</td>
|
569 |
+
<td>28.46</td>
|
570 |
+
<td>40.47</td>
|
571 |
+
<td>47.75</td>
|
572 |
+
</tr>
|
573 |
+
<tr>
|
574 |
+
<td>
|
575 |
+
<a href="https://arxiv.org/abs/1905.13648">SceneText VQA</a><br>(train+val)
|
576 |
+
</td>
|
577 |
+
<td>ANLS (Test server)</td>
|
578 |
+
<td>63.29</td>
|
579 |
+
<td>81.82</td>
|
580 |
+
<td>84.40</td>
|
581 |
+
</tr>
|
582 |
+
<tr>
|
583 |
+
<th>Segmentation</th>
|
584 |
+
</tr>
|
585 |
+
<tr>
|
586 |
+
<td>
|
587 |
+
<a href="https://arxiv.org/abs/1608.00272">RefCOCO</a><br>(combined refcoco, refcoco+,<br>refcocog excluding val<br>and test images)
|
588 |
+
</td>
|
589 |
+
<td>MIoU<br>(validation)<br>refcoco/refcoco+/<br>refcocog</td>
|
590 |
+
<td>
|
591 |
+
73.40<br>
|
592 |
+
68.32<br>
|
593 |
+
67.65
|
594 |
+
</td>
|
595 |
+
<td>
|
596 |
+
75.57<br>
|
597 |
+
69.76<br>
|
598 |
+
70.17
|
599 |
+
</td>
|
600 |
+
<td>
|
601 |
+
76.94<br>
|
602 |
+
72.18<br>
|
603 |
+
72.22
|
604 |
+
</td>
|
605 |
+
</tr>
|
606 |
+
<tr>
|
607 |
+
<th>Video tasks (Caption/QA)</th>
|
608 |
+
</tr>
|
609 |
+
<tr>
|
610 |
+
<td>MSR-VTT (Captioning)</td>
|
611 |
+
<td>CIDEr (test)</td>
|
612 |
+
<td>70.54</td>
|
613 |
+
</tr>
|
614 |
+
<tr>
|
615 |
+
<td>MSR-VTT (QA)</td>
|
616 |
+
<td>Accuracy (test)</td>
|
617 |
+
<td>50.09</td>
|
618 |
+
</tr>
|
619 |
+
<tr>
|
620 |
+
<td>ActivityNet (Captioning)</td>
|
621 |
+
<td>CIDEr (test)</td>
|
622 |
+
<td>34.62</td>
|
623 |
+
</tr>
|
624 |
+
<tr>
|
625 |
+
<td>ActivityNet (QA)</td>
|
626 |
+
<td>Accuracy (test)</td>
|
627 |
+
<td>50.78</td>
|
628 |
+
</tr>
|
629 |
+
<tr>
|
630 |
+
<td>VATEX (Captioning)</td>
|
631 |
+
<td>CIDEr (test)</td>
|
632 |
+
<td>79.73</td>
|
633 |
+
</tr>
|
634 |
+
<tr>
|
635 |
+
<td>MSVD (QA)</td>
|
636 |
+
<td>Accuracy (test)</td>
|
637 |
+
<td>60.22</td>
|
638 |
+
</tr>
|
639 |
+
</tbody></table>
|
640 |
+
|
641 |
+
#### Mix model (fine-tune on mixture of transfer tasks)
|
642 |
+
|
643 |
+
<table>
|
644 |
+
<tbody><tr>
|
645 |
+
<th>Benchmark</th>
|
646 |
+
<th>Metric (split)</th>
|
647 |
+
<th>mix-224</th>
|
648 |
+
<th>mix-448</th>
|
649 |
+
</tr>
|
650 |
+
<tr>
|
651 |
+
<td><a href="https://arxiv.org/abs/2401.06209">MMVP</a></td>
|
652 |
+
<td>Paired Accuracy</td>
|
653 |
+
<td>46.00</td>
|
654 |
+
<td>45.33</td>
|
655 |
+
</tr>
|
656 |
+
<tr>
|
657 |
+
<td><a href="https://arxiv.org/abs/2305.10355">POPE</a></td>
|
658 |
+
<td>Accuracy<br>(random/popular/adversarial)</td>
|
659 |
+
<td>
|
660 |
+
88.00<br>
|
661 |
+
86.63<br>
|
662 |
+
85.67
|
663 |
+
</td>
|
664 |
+
<td>
|
665 |
+
89.37<br>
|
666 |
+
88.40<br>
|
667 |
+
87.47
|
668 |
+
</td>
|
669 |
+
</tr>
|
670 |
+
</tbody></table>
|
671 |
+
|
672 |
+
## Ethics and safety
|
673 |
+
|
674 |
+
### Evaluation approach
|
675 |
+
|
676 |
+
Our evaluation methods include structured evaluations and internal red-teaming
|
677 |
+
testing of relevant content policies. Red-teaming was conducted by a number of
|
678 |
+
different teams, each with different goals and human evaluation metrics. These
|
679 |
+
models were evaluated against a number of different categories relevant to
|
680 |
+
ethics and safety, including:
|
681 |
+
|
682 |
+
* Human evaluation on prompts covering child safety, content safety and
|
683 |
+
representational harms. See the [Gemma model
|
684 |
+
card](https://ai.google.dev/gemma/docs/model_card#evaluation_approach) for
|
685 |
+
more details on evaluation approach, but with image captioning and visual
|
686 |
+
question answering setups.
|
687 |
+
* Image-to-Text benchmark evaluation: Benchmark against relevant academic
|
688 |
+
datasets such as FairFace Dataset ([Karkkainen et al.,
|
689 |
+
2021](https://arxiv.org/abs/1908.04913)).
|
690 |
+
|
691 |
+
### Evaluation results
|
692 |
+
|
693 |
+
* The human evaluation results of ethics and safety evaluations are within
|
694 |
+
acceptable thresholds for meeting [internal
|
695 |
+
policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11)
|
696 |
+
for categories such as child safety, content safety and representational
|
697 |
+
harms.
|
698 |
+
* On top of robust internal evaluations, we also use the Perspective API
|
699 |
+
(threshold of 0.8) to measure toxicity, profanity, and other potential
|
700 |
+
issues in the generated captions for images sourced from the FairFace
|
701 |
+
dataset. We report the maximum and median values observed across subgroups
|
702 |
+
for each of the perceived gender, ethnicity, and age attributes.
|
703 |
+
|
704 |
+
|
705 |
+
<table>
|
706 |
+
<tbody><tr>
|
707 |
+
</tr></tbody><tbody><tr><th>Metric</th>
|
708 |
+
<th>Perceived<br>gender</th>
|
709 |
+
<th></th>
|
710 |
+
<th>Ethnicity</th>
|
711 |
+
<th></th>
|
712 |
+
<th>Age group</th>
|
713 |
+
<th></th>
|
714 |
+
</tr>
|
715 |
+
<tr>
|
716 |
+
<th></th>
|
717 |
+
<th>Maximum</th>
|
718 |
+
<th>Median</th>
|
719 |
+
<th>Maximum</th>
|
720 |
+
<th>Median</th>
|
721 |
+
<th>Maximum</th>
|
722 |
+
<th>Median</th>
|
723 |
+
</tr>
|
724 |
+
<tr>
|
725 |
+
<td>Toxicity</td>
|
726 |
+
<td>0.04%</td>
|
727 |
+
<td>0.03%</td>
|
728 |
+
<td>0.08%</td>
|
729 |
+
<td>0.00%</td>
|
730 |
+
<td>0.09%</td>
|
731 |
+
<td>0.00%</td>
|
732 |
+
</tr>
|
733 |
+
<tr>
|
734 |
+
<td>Identity Attack</td>
|
735 |
+
<td>0.00%</td>
|
736 |
+
<td>0.00%</td>
|
737 |
+
<td>0.00%</td>
|
738 |
+
<td>0.00%</td>
|
739 |
+
<td>0.00%</td>
|
740 |
+
<td>0.00%</td>
|
741 |
+
</tr>
|
742 |
+
<tr>
|
743 |
+
<td>Insult</td>
|
744 |
+
<td>0.06%</td>
|
745 |
+
<td>0.04%</td>
|
746 |
+
<td>0.09%</td>
|
747 |
+
<td>0.07%</td>
|
748 |
+
<td>0.16%</td>
|
749 |
+
<td>0.00%</td>
|
750 |
+
</tr>
|
751 |
+
<tr>
|
752 |
+
<td>Threat</td>
|
753 |
+
<td>0.06%</td>
|
754 |
+
<td>0.05%</td>
|
755 |
+
<td>0.14%</td>
|
756 |
+
<td>0.05%</td>
|
757 |
+
<td>0.17%</td>
|
758 |
+
<td>0.00%</td>
|
759 |
+
</tr>
|
760 |
+
<tr>
|
761 |
+
<td>Profanity</td>
|
762 |
+
<td>0.00%</td>
|
763 |
+
<td>0.00%</td>
|
764 |
+
<td>0.00%</td>
|
765 |
+
<td>0.00%</td>
|
766 |
+
<td>0.00%</td>
|
767 |
+
<td>0.00%</td>
|
768 |
+
</tr>
|
769 |
+
</tbody></table>
|
770 |
+
|
771 |
+
## Usage and limitations
|
772 |
+
|
773 |
+
### Intended usage
|
774 |
+
|
775 |
+
Open Vision Language Models (VLMs) have a wide range of applications across
|
776 |
+
various industries and domains. The following list of potential uses is not
|
777 |
+
comprehensive. The purpose of this list is to provide contextual information
|
778 |
+
about the possible use-cases that the model creators considered as part of model
|
779 |
+
training and development.
|
780 |
+
|
781 |
+
Fine-tune on specific vision-language task:
|
782 |
+
|
783 |
+
* The pre-trained models can be fine-tuned on a wide range of vision-language
|
784 |
+
tasks such as: image captioning, short video caption, visual question
|
785 |
+
answering, text reading, object detection and object segmentation.
|
786 |
+
* The pre-trained models can be fine-tuned for specific domains such as remote
|
787 |
+
sensing question answering, visual questions from people who are blind,
|
788 |
+
science question answering, describe UI element functionalities.
|
789 |
+
* The pre-trained models can be fine-tuned for tasks with non-textual outputs
|
790 |
+
such as bounding boxes or segmentation masks.
|
791 |
+
|
792 |
+
Vision-language research:
|
793 |
+
|
794 |
+
* The pre-trained models and fine-tuned models can serve as a foundation for researchers to experiment with VLM
|
795 |
+
techniques, develop algorithms, and contribute to the advancement of the
|
796 |
+
field.
|
797 |
+
|
798 |
+
### Ethical considerations and risks
|
799 |
+
|
800 |
+
The development of vision-language models (VLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following:
|
801 |
+
|
802 |
+
* Bias and Fairness
|
803 |
+
* VLMs trained on large-scale, real-world image-text data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card.
|
804 |
+
* Misinformation and Misuse
|
805 |
+
* VLMs can be misused to generate text that is false, misleading, or harmful.
|
806 |
+
* Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit](https://ai.google.dev/responsible).
|
807 |
+
* Transparency and Accountability
|
808 |
+
* This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes.
|
809 |
+
* A responsibly developed open model offers the opportunity to share innovation by making VLM technology accessible to developers and researchers across the AI ecosystem.
|
810 |
+
|
811 |
+
|
812 |
+
Risks identified and mitigations:
|
813 |
+
|
814 |
+
* **Perpetuation of biases:** It's encouraged to perform continuous monitoring
|
815 |
+
(using evaluation metrics, human review) and the exploration of de-biasing
|
816 |
+
techniques during model training, fine-tuning, and other use cases.
|
817 |
+
* **Generation of harmful content:** Mechanisms and guidelines for content
|
818 |
+
safety are essential. Developers are encouraged to exercise caution and
|
819 |
+
implement appropriate content safety safeguards based on their specific
|
820 |
+
product policies and application use cases.
|
821 |
+
* **Misuse for malicious purposes:** Technical limitations and developer and
|
822 |
+
end-user education can help mitigate against malicious applications of LLMs.
|
823 |
+
Educational resources and reporting mechanisms for users to flag misuse are
|
824 |
+
provided. Prohibited uses of Gemma models are outlined in the [Gemma
|
825 |
+
Prohibited Use Policy](https://ai.google.dev/gemma/prohibited_use_policy).
|
826 |
+
* **Privacy violations:** Models were trained on data filtered to remove certain personal information and sensitive data. Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques.
|
827 |
+
|
828 |
+
### Limitations
|
829 |
+
|
830 |
+
* Most limitations inherited from the underlying Gemma model still apply:
|
831 |
+
* VLMs are better at tasks that can be framed with clear prompts and
|
832 |
+
instructions. Open-ended or highly complex tasks might be challenging.
|
833 |
+
* Natural language is inherently complex. VLMs might struggle to grasp
|
834 |
+
subtle nuances, sarcasm, or figurative language.
|
835 |
+
* VLMs generate responses based on information they learned from their
|
836 |
+
training datasets, but they are not knowledge bases. They may generate
|
837 |
+
incorrect or outdated factual statements.
|
838 |
+
* VLMs rely on statistical patterns in language and images. They might
|
839 |
+
lack the ability to apply common sense reasoning in certain situations.
|
840 |
+
* PaliGemma was designed first and foremost to serve as a general pre-trained
|
841 |
+
model for transfer to specialized tasks. Hence, its "out of the box" or
|
842 |
+
"zero-shot" performance might lag behind models designed specifically for
|
843 |
+
that.
|
844 |
+
* PaliGemma is not a multi-turn chatbot. It is designed for a single round of
|
845 |
+
image and text input.
|
Paligemma 3B PT 224 gitattributes
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
Paligemma Preprocessor Config.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_valid_processor_keys": [
|
3 |
+
"images",
|
4 |
+
"do_resize",
|
5 |
+
"size",
|
6 |
+
"resample",
|
7 |
+
"do_rescale",
|
8 |
+
"rescale_factor",
|
9 |
+
"do_normalize",
|
10 |
+
"image_mean",
|
11 |
+
"image_std",
|
12 |
+
"return_tensors",
|
13 |
+
"data_format",
|
14 |
+
"input_data_format",
|
15 |
+
"do_convert_rgb"
|
16 |
+
],
|
17 |
+
"do_convert_rgb": null,
|
18 |
+
"do_normalize": true,
|
19 |
+
"do_rescale": true,
|
20 |
+
"do_resize": true,
|
21 |
+
"image_mean": [
|
22 |
+
0.5,
|
23 |
+
0.5,
|
24 |
+
0.5
|
25 |
+
],
|
26 |
+
"image_processor_type": "SiglipImageProcessor",
|
27 |
+
"image_seq_length": 256,
|
28 |
+
"image_std": [
|
29 |
+
0.5,
|
30 |
+
0.5,
|
31 |
+
0.5
|
32 |
+
],
|
33 |
+
"processor_class": "PaliGemmaProcessor",
|
34 |
+
"resample": 3,
|
35 |
+
"rescale_factor": 0.00392156862745098,
|
36 |
+
"size": {
|
37 |
+
"height": 224,
|
38 |
+
"width": 224
|
39 |
+
}
|
40 |
+
}
|
Special Tokens Map.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<image>"
|
4 |
+
],
|
5 |
+
"bos_token": {
|
6 |
+
"content": "<bos>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"eos_token": {
|
13 |
+
"content": "<eos>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false
|
18 |
+
},
|
19 |
+
"pad_token": {
|
20 |
+
"content": "<pad>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false
|
25 |
+
},
|
26 |
+
"unk_token": {
|
27 |
+
"content": "<unk>",
|
28 |
+
"lstrip": false,
|
29 |
+
"normalized": false,
|
30 |
+
"rstrip": false,
|
31 |
+
"single_word": false
|
32 |
+
}
|
33 |
+
}
|
paligemma-3b-pt-224 config (1).json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "final-hf/paligemma-3b-pt-224-main",
|
3 |
+
"architectures": [
|
4 |
+
"PaliGemmaForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"bos_token_id": 2,
|
7 |
+
"eos_token_id": 1,
|
8 |
+
"hidden_size": 2048,
|
9 |
+
"ignore_index": -100,
|
10 |
+
"image_token_index": 257152,
|
11 |
+
"model_type": "paligemma",
|
12 |
+
"pad_token_id": 0,
|
13 |
+
"projection_dim": 2048,
|
14 |
+
"text_config": {
|
15 |
+
"hidden_size": 2048,
|
16 |
+
"intermediate_size": 16384,
|
17 |
+
"model_type": "gemma",
|
18 |
+
"num_attention_heads": 8,
|
19 |
+
"num_hidden_layers": 18,
|
20 |
+
"num_image_tokens": 256,
|
21 |
+
"num_key_value_heads": 1,
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"vocab_size": 257216
|
24 |
+
},
|
25 |
+
"torch_dtype": "float32",
|
26 |
+
"transformers_version": "4.41.0.dev0",
|
27 |
+
"vision_config": {
|
28 |
+
"hidden_size": 1152,
|
29 |
+
"intermediate_size": 4304,
|
30 |
+
"model_type": "siglip_vision_model",
|
31 |
+
"num_attention_heads": 16,
|
32 |
+
"num_hidden_layers": 27,
|
33 |
+
"num_image_tokens": 256,
|
34 |
+
"patch_size": 14,
|
35 |
+
"projection_dim": 2048,
|
36 |
+
"projector_hidden_act": "gelu_fast",
|
37 |
+
"vision_use_head": false
|
38 |
+
},
|
39 |
+
"vocab_size": 257216
|
40 |
+
}
|
paligemma-3b-pt-224 config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 2,
|
4 |
+
"eos_token_id": 1,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.41.0.dev0"
|
7 |
+
}
|