--- license: apache-2.0 language: - en metrics: - rouge - bleu library_name: transformers --- # Model Card for Model ID This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description - **Developed by:** **விபின்** - **Model type:** T5-small - **Language(s) (NLP):** English - **License:** Apache 2.0 license - **Finetuned from model [optional]:** T5-small model ## Uses This model aims to respond with extractive and abstractive keyphrases for the given content. Kindly use "find keyphrase: " as the task prefix prompt to get the desired outputs. ## Bias, Risks, and Limitations This model response is based on the inputs given to it. So if any Harmful sentences given to this model, it will respond according to that. ## How to Get Started with the Model ``` from transformers import T5Tokenizer, T5ForConditionalGeneration import torch model_dir = "rv2307/keyphrase-abstraction-t5-small" tokenizer = T5Tokenizer.from_pretrained(model_dir) model = T5ForConditionalGeneration.from_pretrained(model_dir, torch_dtype=torch.bfloat16) device = "cuda" model.to(device) def generate(text): text = "find keyphrase: " + text inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt') inputs = {k:v.to(model.device) for k,v in inputs.items()} with torch.no_grad(): outputs = model.generate( inputs['input_ids'], attention_mask=inputs['attention_mask'], max_length=100, use_cache=True ) output_list = tokenizer.decode(outputs[0],skip_special_tokens=True) return output_list content = "Hi, How are you??" outputs = generate(content) print(outputs) ``` ## Training Details ### Training Data Mostly used open source datasets for these tasks, which are already available on the huggingface. ### Training Procedure This model has been fine tuned for 6 epochs with 40k datasets collected from the internet. ### Results ``` Epoch Training Loss Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len 1 0.105800 0.087497 43.840900 19.029900 40.303200 40.320300 16.306200 2 0.097600 0.081029 46.335000 21.246800 42.377400 42.387500 16.404900 3 0.091800 0.077546 47.721200 22.467200 43.622400 43.632000 16.308200 4 0.087600 0.075441 48.633700 23.351300 44.493800 44.504300 16.359000 5 0.088200 0.074088 48.977500 23.747000 44.804900 44.813200 16.300500 6 0.084900 0.073381 49.347300 24.029500 45.097100 45.108300 16.332600 ```