ruzarx commited on
Commit
dfa5c07
·
1 Parent(s): 99c5775

Init model commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 253.07 +/- 22.50
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f47509795e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4750979670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4750979700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4750979790>", "_build": "<function ActorCriticPolicy._build at 0x7f4750979820>", "forward": "<function ActorCriticPolicy.forward at 0x7f47509798b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4750979940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f47509799d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4750979a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4750979af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4750979b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4750971e10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670513091361836088, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYePrvDGVi6lrDHOqAu3LV/u5q6tYrquQAAgD8AAIA/AFQLvFwLarrFvZ+7Aok5OJMbQjswFW03AACAPwAAgD9mIgg87C3SOjNGqj0rGD2++5gkPXhVM78AAAAAAACAPw3llD3hfJW6HYHBuP6zqLNYkKC5w8vfNwAAgD8AAIA/MwlbvLhijTwG4jE9y1M3vmV13Tx1fta9AAAAAAAAAABmzaK8j84vus5VozfvHqAw1bq0u7N/v7YAAIA/AACAP2ZgAL2uCZ66Bdhouj7utTXcJsM43gQgtQAAgD8AAIA/cwCvPSlUVrqbaFm4K7MJMnLndruwlns3AACAPwAAgD9NgK89rgeGOSvI4zb78E6yH0qHO+KJD7YAAIA/AACAP5pvWb1lesQ+Xp6xu93pXL52dVU5WPlUvQAAAAAAAAAAc5fuvWvggD57SYE9Dls6vtosI70gCai9AAAAAAAAAADNkJy8XE9/OS5ZND7z0im+ZubePPonxb4AAAAAAACAP03qbz24pq65oKFSuT8aqLQ790o7Y991OAAAgD8AAIA/862zvWh1Xz+zeX49zTeAvlsh/bxLvCW9AAAAAAAAAABmViQ9KcRnuu7nLjjcqiYz/yoHu0YXTbcAAIA/AACAP838Jr1pb7k/Cmsov3HnWj4fSZM8YqUhvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIW9HmOLcBV0CUhpRSlIwBbJRN6AOMAXSUR0CUiJEZiuuBdX2UKGgGaAloD0MIXkiHhzB5ZkCUhpRSlGgVTegDaBZHQJSWX6Fdszl1fZQoaAZoCWgPQwhyo8haQ+thQJSGlFKUaBVN6ANoFkdAlJuqOT7l73V9lChoBmgJaA9DCGWryykBWl9AlIaUUpRoFU3oA2gWR0CUqtwJw84hdX2UKGgGaAloD0MIKA01CskFZkCUhpRSlGgVTegDaBZHQJSuQjqv/zd1fZQoaAZoCWgPQwixUGua91FkQJSGlFKUaBVN6ANoFkdAlK6UWAPNFHV9lChoBmgJaA9DCC51kNeDmmVAlIaUUpRoFU3oA2gWR0CUsMU6PsAvdX2UKGgGaAloD0MIR1Z+GYwUYECUhpRSlGgVTegDaBZHQJSw9MHryDt1fZQoaAZoCWgPQwj+ZIwPs4hiQJSGlFKUaBVN6ANoFkdAlLPBQFcIJXV9lChoBmgJaA9DCGDHf4EgzmVAlIaUUpRoFU3oA2gWR0CUtUxNIsiCdX2UKGgGaAloD0MImn0eozxiY0CUhpRSlGgVTegDaBZHQJTMaZML4N91fZQoaAZoCWgPQwiCrRIsjjlmQJSGlFKUaBVN6ANoFkdAlMy6jFhod3V9lChoBmgJaA9DCNEi2/l+7GRAlIaUUpRoFU3oA2gWR0CU1USzPa+OdX2UKGgGaAloD0MIhgFLruI/YECUhpRSlGgVTegDaBZHQJTa21a4c3l1fZQoaAZoCWgPQwgZG7rZH4VxQJSGlFKUaBVNvAJoFkdAlN1ShvitJXV9lChoBmgJaA9DCKkR+pn6VmBAlIaUUpRoFU3oA2gWR0CU3r8HfMwDdX2UKGgGaAloD0MIBHXKoxsBX0CUhpRSlGgVTegDaBZHQJTmprsSkCV1fZQoaAZoCWgPQwgE4nX9AplhQJSGlFKUaBVN6ANoFkdAlOd052hZhnV9lChoBmgJaA9DCPAxWHGqn2VAlIaUUpRoFU3oA2gWR0CU9gta6jFidX2UKGgGaAloD0MIB5eOOc/EOcCUhpRSlGgVTQUBaBZHQJT5qyMUAT91fZQoaAZoCWgPQwhJ8lzfh0JfQJSGlFKUaBVN6ANoFkdAlQLkYTCcgHV9lChoBmgJaA9DCFCpEmVv3F5AlIaUUpRoFU3oA2gWR0CVBqshxHXmdX2UKGgGaAloD0MI+zxGeeZPaECUhpRSlGgVTegDaBZHQJUHAMZxaPl1fZQoaAZoCWgPQwgOar+1k55mQJSGlFKUaBVN6ANoFkdAlQm7/CIk7nV9lChoBmgJaA9DCPsCeuHOKWJAlIaUUpRoFU3oA2gWR0CVCgEsasIWdX2UKGgGaAloD0MIrz4e+u7FZ0CUhpRSlGgVTegDaBZHQJUNjOD8Lrp1fZQoaAZoCWgPQwgpl8YvvNZgQJSGlFKUaBVN6ANoFkdAlQ9U6o2n9HV9lChoBmgJaA9DCH7hlSTPSmRAlIaUUpRoFU3oA2gWR0CVEUww0wajdX2UKGgGaAloD0MIMBLaci4vXkCUhpRSlGgVTegDaBZHQJURp/PPcBV1fZQoaAZoCWgPQwgxCoLHt2lQQJSGlFKUaBVNQQFoFkdAlS4Y6Kcd53V9lChoBmgJaA9DCOCik6XWRF5AlIaUUpRoFU3oA2gWR0CVMPY7JW/8dX2UKGgGaAloD0MI2V92Tx4UZECUhpRSlGgVTegDaBZHQJU3Or6tT1l1fZQoaAZoCWgPQwjxZ3izhv9iQJSGlFKUaBVN6ANoFkdAlTngskIHDHV9lChoBmgJaA9DCIV5jzPNNWdAlIaUUpRoFU3oA2gWR0CVOzCrcTJydX2UKGgGaAloD0MI648wDFhWYkCUhpRSlGgVTegDaBZHQJVDUHoouwp1fZQoaAZoCWgPQwjsZ7EUSUZyQJSGlFKUaBVNKAJoFkdAlUcQPEsJ6nV9lChoBmgJaA9DCJz4akdx2llAlIaUUpRoFU3oA2gWR0CVUQAwfyPNdX2UKGgGaAloD0MIYvVHGAbmYECUhpRSlGgVTegDaBZHQJVUTPE87p51fZQoaAZoCWgPQwiTrMPR1Y5vQJSGlFKUaBVNUQNoFkdAlVVqqwQlKXV9lChoBmgJaA9DCIsbt5if0WVAlIaUUpRoFU3oA2gWR0CVYIAP/aQFdX2UKGgGaAloD0MIXW+bqVAscECUhpRSlGgVTWwCaBZHQJVjaOn2qT91fZQoaAZoCWgPQwhqpnud1CpnQJSGlFKUaBVN6ANoFkdAlWRiTEBKc3V9lChoBmgJaA9DCIkI/yJoVmJAlIaUUpRoFU3oA2gWR0CVZKbW3BpIdX2UKGgGaAloD0MIAOZatABkYECUhpRSlGgVTegDaBZHQJVrwzCUHIJ1fZQoaAZoCWgPQwjR56OMuHZjQJSGlFKUaBVN6ANoFkdAlW66nm7rcHV9lChoBmgJaA9DCO0qpPykM2VAlIaUUpRoFU3oA2gWR0CVb1FrVOKwdX2UKGgGaAloD0MIJXhDGhVkZkCUhpRSlGgVTegDaBZHQJWNIQYk3S91fZQoaAZoCWgPQwgYd4NorUlRQJSGlFKUaBVL9WgWR0CVjYiay8jBdX2UKGgGaAloD0MIw33k1iTpY0CUhpRSlGgVTegDaBZHQJWP+s5n14B1fZQoaAZoCWgPQwiq9BPO7qdlQJSGlFKUaBVN6ANoFkdAlZhcWO6un3V9lChoBmgJaA9DCOp7DcFx6F1AlIaUUpRoFU3oA2gWR0CVmbdpZfUndX2UKGgGaAloD0MIaeBHNewpbUCUhpRSlGgVTZoDaBZHQJWhKPdVNpN1fZQoaAZoCWgPQwhJ2SJpN/BfQJSGlFKUaBVN6ANoFkdAlaKyRKYiPnV9lChoBmgJaA9DCLu04bA0/GRAlIaUUpRoFU3oA2gWR0CVsUIBRyfddX2UKGgGaAloD0MITMXGvI4mY0CUhpRSlGgVTegDaBZHQJW1NCa7Vax1fZQoaAZoCWgPQwieCOI8nG1jQJSGlFKUaBVN6ANoFkdAlbZ3TAnDznV9lChoBmgJaA9DCD5d3bHYcmVAlIaUUpRoFU3oA2gWR0CVwM/dIoVmdX2UKGgGaAloD0MICY1g43pDYUCUhpRSlGgVTegDaBZHQJXCslAu7H11fZQoaAZoCWgPQwiqtpvgG7NkQJSGlFKUaBVN6ANoFkdAlcOYfjjrA3V9lChoBmgJaA9DCPwApDbxRmVAlIaUUpRoFU3oA2gWR0CVyJ/oaDPGdX2UKGgGaAloD0MI4Qz+fjF+ZECUhpRSlGgVTegDaBZHQJXKiiL2pQ11fZQoaAZoCWgPQwgxlX7CWY1iQJSGlFKUaBVN6ANoFkdAlcrpXU6PsHV9lChoBmgJaA9DCIpyafzCPWVAlIaUUpRoFU3oA2gWR0CV5v+VTrE+dX2UKGgGaAloD0MIPKQYINEHZUCUhpRSlGgVTegDaBZHQJXnXyz5XU91fZQoaAZoCWgPQwh+q3XisjlxQJSGlFKUaBVNWgNoFkdAleh41cdHUnV9lChoBmgJaA9DCDroEg69aWZAlIaUUpRoFU3oA2gWR0CV6YLxZuAJdX2UKGgGaAloD0MIRZ+PMmJRZUCUhpRSlGgVTegDaBZHQJXyNlZowmF1fZQoaAZoCWgPQwjScqCHWlthQJSGlFKUaBVN6ANoFkdAlfkSsKb8WXV9lChoBmgJaA9DCNEi2/n+tWNAlIaUUpRoFU3oA2gWR0CV+o0PpY9xdX2UKGgGaAloD0MI5X0czdEccECUhpRSlGgVTcQCaBZHQJYGH7hvR7Z1fZQoaAZoCWgPQwhvY7MjVWpnQJSGlFKUaBVN6ANoFkdAlgj4MjNY83V9lChoBmgJaA9DCEfGavN/cWRAlIaUUpRoFU3oA2gWR0CWDF6bvw3HdX2UKGgGaAloD0MIJ79FJ8s8Y0CUhpRSlGgVTegDaBZHQJYNZpcophF1fZQoaAZoCWgPQwhwmdNlMcphQJSGlFKUaBVN6ANoFkdAlhbBMN+b3HV9lChoBmgJaA9DCIyfxr35pGxAlIaUUpRoFU0cAmgWR0CWFwkQPI4mdX2UKGgGaAloD0MIyLH1DGGjZECUhpRSlGgVTegDaBZHQJYYhs0pEx91fZQoaAZoCWgPQwiDUrRyL/5JQJSGlFKUaBVL7mgWR0CWG29nbqQjdX2UKGgGaAloD0MIeGLWiyEEY0CUhpRSlGgVTegDaBZHQJYeLNZ/0/Z1fZQoaAZoCWgPQwj+LJYieaVmQJSGlFKUaBVN6ANoFkdAliAf+OwPiHV9lChoBmgJaA9DCKvpeqLrhmFAlIaUUpRoFU3oA2gWR0CWIHsq8UVSdX2UKGgGaAloD0MIfSB551DYZ0CUhpRSlGgVTegDaBZHQJZDevLX+VF1fZQoaAZoCWgPQwjQCgxZ3cdnQJSGlFKUaBVN6ANoFkdAlkPryhBZ6nV9lChoBmgJaA9DCNxlv+50hWtAlIaUUpRoFU3KA2gWR0CWRHWy1NQCdX2UKGgGaAloD0MIozzzcthCYECUhpRSlGgVTegDaBZHQJZFNBC2MKl1fZQoaAZoCWgPQwgUCDvF6oZxQJSGlFKUaBVNuQNoFkdAllRLCvX9SHV9lChoBmgJaA9DCK7Zykv+nmVAlIaUUpRoFU3oA2gWR0CWWZh4MWoFdX2UKGgGaAloD0MI91rQe+MFYUCUhpRSlGgVTegDaBZHQJZmBDXvphZ1fZQoaAZoCWgPQwgrFyr/WpZtQJSGlFKUaBVN6QFoFkdAlme4HcDbJ3V9lChoBmgJaA9DCJYgI6BCz2BAlIaUUpRoFU3oA2gWR0CWaOGp++dtdX2UKGgGaAloD0MIxuBh2jd4Y0CUhpRSlGgVTegDaBZHQJZtDtOVPep1fZQoaAZoCWgPQwiFsvD1dc9xQJSGlFKUaBVNzAJoFkdAlm3yaqjrRnV9lChoBmgJaA9DCMpv0ckS73BAlIaUUpRoFU1QAmgWR0CWbhT8pCrtdX2UKGgGaAloD0MInUtxVVnpbECUhpRSlGgVTVQDaBZHQJZz471ZkkN1fZQoaAZoCWgPQwggCmZMwbRkQJSGlFKUaBVN6ANoFkdAlnWNpyp71XV9lChoBmgJaA9DCHRd+MF5EGBAlIaUUpRoFU3oA2gWR0CWdcGACnxbdX2UKGgGaAloD0MIkpGzsKeLS0CUhpRSlGgVS/doFkdAlnaRYNiH7HV9lChoBmgJaA9DCIunHmlwomBAlIaUUpRoFU3oA2gWR0CWdxi97F85dX2UKGgGaAloD0MI3V1nQ/4CZkCUhpRSlGgVTegDaBZHQJZ5ktFrl/91fZQoaAZoCWgPQwgO8+UF2A9fQJSGlFKUaBVN6ANoFkdAln47L6k693V9lChoBmgJaA9DCJl/9E2a23BAlIaUUpRoFU3+AWgWR0CWhLSElE7XdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
lunar_model.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39dae26c88bfb730502c189357c3a7a7eb8f9c5b4414e6da8f475cb0e9475bb9
3
+ size 147216
lunar_model/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
lunar_model/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f47509795e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4750979670>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4750979700>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4750979790>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f4750979820>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f47509798b0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4750979940>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f47509799d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4750979a60>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4750979af0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4750979b80>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f4750971e10>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000.0,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670513091361836088,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYePrvDGVi6lrDHOqAu3LV/u5q6tYrquQAAgD8AAIA/AFQLvFwLarrFvZ+7Aok5OJMbQjswFW03AACAPwAAgD9mIgg87C3SOjNGqj0rGD2++5gkPXhVM78AAAAAAACAPw3llD3hfJW6HYHBuP6zqLNYkKC5w8vfNwAAgD8AAIA/MwlbvLhijTwG4jE9y1M3vmV13Tx1fta9AAAAAAAAAABmzaK8j84vus5VozfvHqAw1bq0u7N/v7YAAIA/AACAP2ZgAL2uCZ66Bdhouj7utTXcJsM43gQgtQAAgD8AAIA/cwCvPSlUVrqbaFm4K7MJMnLndruwlns3AACAPwAAgD9NgK89rgeGOSvI4zb78E6yH0qHO+KJD7YAAIA/AACAP5pvWb1lesQ+Xp6xu93pXL52dVU5WPlUvQAAAAAAAAAAc5fuvWvggD57SYE9Dls6vtosI70gCai9AAAAAAAAAADNkJy8XE9/OS5ZND7z0im+ZubePPonxb4AAAAAAACAP03qbz24pq65oKFSuT8aqLQ790o7Y991OAAAgD8AAIA/862zvWh1Xz+zeX49zTeAvlsh/bxLvCW9AAAAAAAAAABmViQ9KcRnuu7nLjjcqiYz/yoHu0YXTbcAAIA/AACAP838Jr1pb7k/Cmsov3HnWj4fSZM8YqUhvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIW9HmOLcBV0CUhpRSlIwBbJRN6AOMAXSUR0CUiJEZiuuBdX2UKGgGaAloD0MIXkiHhzB5ZkCUhpRSlGgVTegDaBZHQJSWX6Fdszl1fZQoaAZoCWgPQwhyo8haQ+thQJSGlFKUaBVN6ANoFkdAlJuqOT7l73V9lChoBmgJaA9DCGWryykBWl9AlIaUUpRoFU3oA2gWR0CUqtwJw84hdX2UKGgGaAloD0MIKA01CskFZkCUhpRSlGgVTegDaBZHQJSuQjqv/zd1fZQoaAZoCWgPQwixUGua91FkQJSGlFKUaBVN6ANoFkdAlK6UWAPNFHV9lChoBmgJaA9DCC51kNeDmmVAlIaUUpRoFU3oA2gWR0CUsMU6PsAvdX2UKGgGaAloD0MIR1Z+GYwUYECUhpRSlGgVTegDaBZHQJSw9MHryDt1fZQoaAZoCWgPQwj+ZIwPs4hiQJSGlFKUaBVN6ANoFkdAlLPBQFcIJXV9lChoBmgJaA9DCGDHf4EgzmVAlIaUUpRoFU3oA2gWR0CUtUxNIsiCdX2UKGgGaAloD0MImn0eozxiY0CUhpRSlGgVTegDaBZHQJTMaZML4N91fZQoaAZoCWgPQwiCrRIsjjlmQJSGlFKUaBVN6ANoFkdAlMy6jFhod3V9lChoBmgJaA9DCNEi2/l+7GRAlIaUUpRoFU3oA2gWR0CU1USzPa+OdX2UKGgGaAloD0MIhgFLruI/YECUhpRSlGgVTegDaBZHQJTa21a4c3l1fZQoaAZoCWgPQwgZG7rZH4VxQJSGlFKUaBVNvAJoFkdAlN1ShvitJXV9lChoBmgJaA9DCKkR+pn6VmBAlIaUUpRoFU3oA2gWR0CU3r8HfMwDdX2UKGgGaAloD0MIBHXKoxsBX0CUhpRSlGgVTegDaBZHQJTmprsSkCV1fZQoaAZoCWgPQwgE4nX9AplhQJSGlFKUaBVN6ANoFkdAlOd052hZhnV9lChoBmgJaA9DCPAxWHGqn2VAlIaUUpRoFU3oA2gWR0CU9gta6jFidX2UKGgGaAloD0MIB5eOOc/EOcCUhpRSlGgVTQUBaBZHQJT5qyMUAT91fZQoaAZoCWgPQwhJ8lzfh0JfQJSGlFKUaBVN6ANoFkdAlQLkYTCcgHV9lChoBmgJaA9DCFCpEmVv3F5AlIaUUpRoFU3oA2gWR0CVBqshxHXmdX2UKGgGaAloD0MI+zxGeeZPaECUhpRSlGgVTegDaBZHQJUHAMZxaPl1fZQoaAZoCWgPQwgOar+1k55mQJSGlFKUaBVN6ANoFkdAlQm7/CIk7nV9lChoBmgJaA9DCPsCeuHOKWJAlIaUUpRoFU3oA2gWR0CVCgEsasIWdX2UKGgGaAloD0MIrz4e+u7FZ0CUhpRSlGgVTegDaBZHQJUNjOD8Lrp1fZQoaAZoCWgPQwgpl8YvvNZgQJSGlFKUaBVN6ANoFkdAlQ9U6o2n9HV9lChoBmgJaA9DCH7hlSTPSmRAlIaUUpRoFU3oA2gWR0CVEUww0wajdX2UKGgGaAloD0MIMBLaci4vXkCUhpRSlGgVTegDaBZHQJURp/PPcBV1fZQoaAZoCWgPQwgxCoLHt2lQQJSGlFKUaBVNQQFoFkdAlS4Y6Kcd53V9lChoBmgJaA9DCOCik6XWRF5AlIaUUpRoFU3oA2gWR0CVMPY7JW/8dX2UKGgGaAloD0MI2V92Tx4UZECUhpRSlGgVTegDaBZHQJU3Or6tT1l1fZQoaAZoCWgPQwjxZ3izhv9iQJSGlFKUaBVN6ANoFkdAlTngskIHDHV9lChoBmgJaA9DCIV5jzPNNWdAlIaUUpRoFU3oA2gWR0CVOzCrcTJydX2UKGgGaAloD0MI648wDFhWYkCUhpRSlGgVTegDaBZHQJVDUHoouwp1fZQoaAZoCWgPQwjsZ7EUSUZyQJSGlFKUaBVNKAJoFkdAlUcQPEsJ6nV9lChoBmgJaA9DCJz4akdx2llAlIaUUpRoFU3oA2gWR0CVUQAwfyPNdX2UKGgGaAloD0MIYvVHGAbmYECUhpRSlGgVTegDaBZHQJVUTPE87p51fZQoaAZoCWgPQwiTrMPR1Y5vQJSGlFKUaBVNUQNoFkdAlVVqqwQlKXV9lChoBmgJaA9DCIsbt5if0WVAlIaUUpRoFU3oA2gWR0CVYIAP/aQFdX2UKGgGaAloD0MIXW+bqVAscECUhpRSlGgVTWwCaBZHQJVjaOn2qT91fZQoaAZoCWgPQwhqpnud1CpnQJSGlFKUaBVN6ANoFkdAlWRiTEBKc3V9lChoBmgJaA9DCIkI/yJoVmJAlIaUUpRoFU3oA2gWR0CVZKbW3BpIdX2UKGgGaAloD0MIAOZatABkYECUhpRSlGgVTegDaBZHQJVrwzCUHIJ1fZQoaAZoCWgPQwjR56OMuHZjQJSGlFKUaBVN6ANoFkdAlW66nm7rcHV9lChoBmgJaA9DCO0qpPykM2VAlIaUUpRoFU3oA2gWR0CVb1FrVOKwdX2UKGgGaAloD0MIJXhDGhVkZkCUhpRSlGgVTegDaBZHQJWNIQYk3S91fZQoaAZoCWgPQwgYd4NorUlRQJSGlFKUaBVL9WgWR0CVjYiay8jBdX2UKGgGaAloD0MIw33k1iTpY0CUhpRSlGgVTegDaBZHQJWP+s5n14B1fZQoaAZoCWgPQwiq9BPO7qdlQJSGlFKUaBVN6ANoFkdAlZhcWO6un3V9lChoBmgJaA9DCOp7DcFx6F1AlIaUUpRoFU3oA2gWR0CVmbdpZfUndX2UKGgGaAloD0MIaeBHNewpbUCUhpRSlGgVTZoDaBZHQJWhKPdVNpN1fZQoaAZoCWgPQwhJ2SJpN/BfQJSGlFKUaBVN6ANoFkdAlaKyRKYiPnV9lChoBmgJaA9DCLu04bA0/GRAlIaUUpRoFU3oA2gWR0CVsUIBRyfddX2UKGgGaAloD0MITMXGvI4mY0CUhpRSlGgVTegDaBZHQJW1NCa7Vax1fZQoaAZoCWgPQwieCOI8nG1jQJSGlFKUaBVN6ANoFkdAlbZ3TAnDznV9lChoBmgJaA9DCD5d3bHYcmVAlIaUUpRoFU3oA2gWR0CVwM/dIoVmdX2UKGgGaAloD0MICY1g43pDYUCUhpRSlGgVTegDaBZHQJXCslAu7H11fZQoaAZoCWgPQwiqtpvgG7NkQJSGlFKUaBVN6ANoFkdAlcOYfjjrA3V9lChoBmgJaA9DCPwApDbxRmVAlIaUUpRoFU3oA2gWR0CVyJ/oaDPGdX2UKGgGaAloD0MI4Qz+fjF+ZECUhpRSlGgVTegDaBZHQJXKiiL2pQ11fZQoaAZoCWgPQwgxlX7CWY1iQJSGlFKUaBVN6ANoFkdAlcrpXU6PsHV9lChoBmgJaA9DCIpyafzCPWVAlIaUUpRoFU3oA2gWR0CV5v+VTrE+dX2UKGgGaAloD0MIPKQYINEHZUCUhpRSlGgVTegDaBZHQJXnXyz5XU91fZQoaAZoCWgPQwh+q3XisjlxQJSGlFKUaBVNWgNoFkdAleh41cdHUnV9lChoBmgJaA9DCDroEg69aWZAlIaUUpRoFU3oA2gWR0CV6YLxZuAJdX2UKGgGaAloD0MIRZ+PMmJRZUCUhpRSlGgVTegDaBZHQJXyNlZowmF1fZQoaAZoCWgPQwjScqCHWlthQJSGlFKUaBVN6ANoFkdAlfkSsKb8WXV9lChoBmgJaA9DCNEi2/n+tWNAlIaUUpRoFU3oA2gWR0CV+o0PpY9xdX2UKGgGaAloD0MI5X0czdEccECUhpRSlGgVTcQCaBZHQJYGH7hvR7Z1fZQoaAZoCWgPQwhvY7MjVWpnQJSGlFKUaBVN6ANoFkdAlgj4MjNY83V9lChoBmgJaA9DCEfGavN/cWRAlIaUUpRoFU3oA2gWR0CWDF6bvw3HdX2UKGgGaAloD0MIJ79FJ8s8Y0CUhpRSlGgVTegDaBZHQJYNZpcophF1fZQoaAZoCWgPQwhwmdNlMcphQJSGlFKUaBVN6ANoFkdAlhbBMN+b3HV9lChoBmgJaA9DCIyfxr35pGxAlIaUUpRoFU0cAmgWR0CWFwkQPI4mdX2UKGgGaAloD0MIyLH1DGGjZECUhpRSlGgVTegDaBZHQJYYhs0pEx91fZQoaAZoCWgPQwiDUrRyL/5JQJSGlFKUaBVL7mgWR0CWG29nbqQjdX2UKGgGaAloD0MIeGLWiyEEY0CUhpRSlGgVTegDaBZHQJYeLNZ/0/Z1fZQoaAZoCWgPQwj+LJYieaVmQJSGlFKUaBVN6ANoFkdAliAf+OwPiHV9lChoBmgJaA9DCKvpeqLrhmFAlIaUUpRoFU3oA2gWR0CWIHsq8UVSdX2UKGgGaAloD0MIfSB551DYZ0CUhpRSlGgVTegDaBZHQJZDevLX+VF1fZQoaAZoCWgPQwjQCgxZ3cdnQJSGlFKUaBVN6ANoFkdAlkPryhBZ6nV9lChoBmgJaA9DCNxlv+50hWtAlIaUUpRoFU3KA2gWR0CWRHWy1NQCdX2UKGgGaAloD0MIozzzcthCYECUhpRSlGgVTegDaBZHQJZFNBC2MKl1fZQoaAZoCWgPQwgUCDvF6oZxQJSGlFKUaBVNuQNoFkdAllRLCvX9SHV9lChoBmgJaA9DCK7Zykv+nmVAlIaUUpRoFU3oA2gWR0CWWZh4MWoFdX2UKGgGaAloD0MI91rQe+MFYUCUhpRSlGgVTegDaBZHQJZmBDXvphZ1fZQoaAZoCWgPQwgrFyr/WpZtQJSGlFKUaBVN6QFoFkdAlme4HcDbJ3V9lChoBmgJaA9DCJYgI6BCz2BAlIaUUpRoFU3oA2gWR0CWaOGp++dtdX2UKGgGaAloD0MIxuBh2jd4Y0CUhpRSlGgVTegDaBZHQJZtDtOVPep1fZQoaAZoCWgPQwiFsvD1dc9xQJSGlFKUaBVNzAJoFkdAlm3yaqjrRnV9lChoBmgJaA9DCMpv0ckS73BAlIaUUpRoFU1QAmgWR0CWbhT8pCrtdX2UKGgGaAloD0MInUtxVVnpbECUhpRSlGgVTVQDaBZHQJZz471ZkkN1fZQoaAZoCWgPQwggCmZMwbRkQJSGlFKUaBVN6ANoFkdAlnWNpyp71XV9lChoBmgJaA9DCHRd+MF5EGBAlIaUUpRoFU3oA2gWR0CWdcGACnxbdX2UKGgGaAloD0MIkpGzsKeLS0CUhpRSlGgVS/doFkdAlnaRYNiH7HV9lChoBmgJaA9DCIunHmlwomBAlIaUUpRoFU3oA2gWR0CWdxi97F85dX2UKGgGaAloD0MI3V1nQ/4CZkCUhpRSlGgVTegDaBZHQJZ5ktFrl/91fZQoaAZoCWgPQwgO8+UF2A9fQJSGlFKUaBVN6ANoFkdAln47L6k693V9lChoBmgJaA9DCJl/9E2a23BAlIaUUpRoFU3+AWgWR0CWhLSElE7XdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
lunar_model/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b70928c22a64b2a3502df01b091d00e635f0f057d24ff3f58c18acbba4bf610f
3
+ size 87929
lunar_model/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71f8dc62f85d00b4bc32ae77757aec9cabcc7e8fec924568d1f9d3bc3c5db973
3
+ size 43201
lunar_model/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar_model/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (208 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 253.072901293509, "std_reward": 22.49556688126507, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-08T16:18:45.024610"}