Text Generation
Transformers
llm-rs
ggml
Inference Endpoints
LLukas22 commited on
Commit
1f0e430
1 Parent(s): f5b9e0d

Generated README.md

Browse files
Files changed (1) hide show
  1. README.md +141 -0
README.md ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - bigscience/xP3
4
+ license: bigscience-bloom-rail-1.0
5
+ language:
6
+ - ak
7
+ - ar
8
+ - as
9
+ - bm
10
+ - bn
11
+ - ca
12
+ - code
13
+ - en
14
+ - es
15
+ - eu
16
+ - fon
17
+ - fr
18
+ - gu
19
+ - hi
20
+ - id
21
+ - ig
22
+ - ki
23
+ - kn
24
+ - lg
25
+ - ln
26
+ - ml
27
+ - mr
28
+ - ne
29
+ - nso
30
+ - ny
31
+ - or
32
+ - pa
33
+ - pt
34
+ - rn
35
+ - rw
36
+ - sn
37
+ - st
38
+ - sw
39
+ - ta
40
+ - te
41
+ - tn
42
+ - ts
43
+ - tum
44
+ - tw
45
+ - ur
46
+ - vi
47
+ - wo
48
+ - xh
49
+ - yo
50
+ - zh
51
+ - zu
52
+ programming_language:
53
+ - C
54
+ - C++
55
+ - C#
56
+ - Go
57
+ - Java
58
+ - JavaScript
59
+ - Lua
60
+ - PHP
61
+ - Python
62
+ - Ruby
63
+ - Rust
64
+ - Scala
65
+ - TypeScript
66
+ tags:
67
+ - llm-rs
68
+ - ggml
69
+ pipeline_tag: text-generation
70
+ ---
71
+
72
+ # GGML covnerted Models of [BigScience](https://huggingface.co/bigscience)'s Bloom models
73
+
74
+ ## Description
75
+
76
+ > We present BLOOMZ & mT0, a family of models capable of following human instructions in dozens of languages zero-shot. We finetune BLOOM & mT5 pretrained multilingual language models on our crosslingual task mixture (xP3) and find the resulting models capable of crosslingual generalization to unseen tasks & languages.
77
+
78
+ - **Repository:** [bigscience-workshop/xmtf](https://github.com/bigscience-workshop/xmtf)
79
+ - **Paper:** [Crosslingual Generalization through Multitask Finetuning](https://arxiv.org/abs/2211.01786)
80
+ - **Point of Contact:** [Niklas Muennighoff](mailto:[email protected])
81
+ - **Languages:** Refer to [bloom](https://huggingface.co/bigscience/bloom) for pretraining & [xP3](https://huggingface.co/datasets/bigscience/xP3) for finetuning language proportions. It understands both pretraining & finetuning languages.
82
+
83
+ ### Intended use
84
+
85
+ We recommend using the model to perform tasks expressed in natural language. For example, given the prompt "*Translate to English: Je t’aime.*", the model will most likely answer "*I love you.*". Some prompt ideas from our paper:
86
+ - 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?
87
+ - Suggest at least five related search terms to "Mạng neural nhân tạo".
88
+ - Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish):
89
+ - Explain in a sentence in Telugu what is backpropagation in neural networks.
90
+
91
+ ## Converted Models
92
+ | Name | Based on | Type | Container | GGML Version |
93
+ |:----------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------|:-------|:------------|:---------------|
94
+ | [bloomz-1b1-f16.bin](https://huggingface.co/rustformers/bloomz-ggml/blob/main/bloomz-1b1-f16.bin) | [bigscience/bloomz-1b1](https://huggingface.co/bigscience/bloomz-1b1) | F16 | GGML | V3 |
95
+ | [bloomz-1b1-q4_0.bin](https://huggingface.co/rustformers/bloomz-ggml/blob/main/bloomz-1b1-q4_0.bin) | [bigscience/bloomz-1b1](https://huggingface.co/bigscience/bloomz-1b1) | Q4_0 | GGML | V3 |
96
+ | [bloomz-1b1-q4_0-ggjt.bin](https://huggingface.co/rustformers/bloomz-ggml/blob/main/bloomz-1b1-q4_0-ggjt.bin) | [bigscience/bloomz-1b1](https://huggingface.co/bigscience/bloomz-1b1) | Q4_0 | GGJT | V3 |
97
+ | [bloomz-1b1-q5_1-ggjt.bin](https://huggingface.co/rustformers/bloomz-ggml/blob/main/bloomz-1b1-q5_1-ggjt.bin) | [bigscience/bloomz-1b1](https://huggingface.co/bigscience/bloomz-1b1) | Q5_1 | GGJT | V3 |
98
+ | [bloomz-1b7-f16.bin](https://huggingface.co/rustformers/bloomz-ggml/blob/main/bloomz-1b7-f16.bin) | [bigscience/bloomz-1b7](https://huggingface.co/bigscience/bloomz-1b7) | F16 | GGML | V3 |
99
+ | [bloomz-1b7-q4_0.bin](https://huggingface.co/rustformers/bloomz-ggml/blob/main/bloomz-1b7-q4_0.bin) | [bigscience/bloomz-1b7](https://huggingface.co/bigscience/bloomz-1b7) | Q4_0 | GGML | V3 |
100
+ | [bloomz-1b7-q4_0-ggjt.bin](https://huggingface.co/rustformers/bloomz-ggml/blob/main/bloomz-1b7-q4_0-ggjt.bin) | [bigscience/bloomz-1b7](https://huggingface.co/bigscience/bloomz-1b7) | Q4_0 | GGJT | V3 |
101
+ | [bloomz-1b7-q5_1-ggjt.bin](https://huggingface.co/rustformers/bloomz-ggml/blob/main/bloomz-1b7-q5_1-ggjt.bin) | [bigscience/bloomz-1b7](https://huggingface.co/bigscience/bloomz-1b7) | Q5_1 | GGJT | V3 |
102
+ | [bloomz-3b-f16.bin](https://huggingface.co/rustformers/bloomz-ggml/blob/main/bloomz-3b-f16.bin) | [bigscience/bloomz-3b](https://huggingface.co/bigscience/bloomz-3b) | F16 | GGML | V3 |
103
+ | [bloomz-3b-q4_0.bin](https://huggingface.co/rustformers/bloomz-ggml/blob/main/bloomz-3b-q4_0.bin) | [bigscience/bloomz-3b](https://huggingface.co/bigscience/bloomz-3b) | Q4_0 | GGML | V3 |
104
+ | [bloomz-3b-q4_0-ggjt.bin](https://huggingface.co/rustformers/bloomz-ggml/blob/main/bloomz-3b-q4_0-ggjt.bin) | [bigscience/bloomz-3b](https://huggingface.co/bigscience/bloomz-3b) | Q4_0 | GGJT | V3 |
105
+ | [bloomz-3b-q5_1-ggjt.bin](https://huggingface.co/rustformers/bloomz-ggml/blob/main/bloomz-3b-q5_1-ggjt.bin) | [bigscience/bloomz-3b](https://huggingface.co/bigscience/bloomz-3b) | Q5_1 | GGJT | V3 |
106
+ | [bloomz-560m-f16.bin](https://huggingface.co/rustformers/bloomz-ggml/blob/main/bloomz-560m-f16.bin) | [bigscience/bloomz-560m](https://huggingface.co/bigscience/bloomz-560m) | F16 | GGML | V3 |
107
+ | [bloomz-560m-q4_0.bin](https://huggingface.co/rustformers/bloomz-ggml/blob/main/bloomz-560m-q4_0.bin) | [bigscience/bloomz-560m](https://huggingface.co/bigscience/bloomz-560m) | Q4_0 | GGML | V3 |
108
+ | [bloomz-560m-q4_0-ggjt.bin](https://huggingface.co/rustformers/bloomz-ggml/blob/main/bloomz-560m-q4_0-ggjt.bin) | [bigscience/bloomz-560m](https://huggingface.co/bigscience/bloomz-560m) | Q4_0 | GGJT | V3 |
109
+ | [bloomz-560m-q5_1-ggjt.bin](https://huggingface.co/rustformers/bloomz-ggml/blob/main/bloomz-560m-q5_1-ggjt.bin) | [bigscience/bloomz-560m](https://huggingface.co/bigscience/bloomz-560m) | Q5_1 | GGJT | V3 |
110
+
111
+ ## Usage
112
+
113
+ ### Python via [llm-rs](https://github.com/LLukas22/llm-rs-python):
114
+
115
+ #### Installation
116
+ Via pip: `pip install llm-rs`
117
+
118
+ #### Run inference
119
+ ```python
120
+ from llm_rs import AutoModel
121
+
122
+ #Load the model, define any model you like from the list above as the `model_file`
123
+ model = AutoModel.from_pretrained("rustformers/bloomz-ggml",model_file="bloomz-3b-q4_0-ggjt.bin")
124
+
125
+ #Generate
126
+ print(model.generate("The meaning of life is"))
127
+ ```
128
+
129
+ ### Rust via [Rustformers/llm](https://github.com/rustformers/llm):
130
+
131
+ #### Installation
132
+ ```
133
+ git clone --recurse-submodules https://github.com/rustformers/llm.git
134
+ cd llm
135
+ cargo build --release
136
+ ```
137
+
138
+ #### Run inference
139
+ ```
140
+ cargo run --release -- bloom infer -m path/to/model.bin -p "Tell me how cool the Rust programming language is:"
141
+ ```