--- license: mit base_model: SCUT-DLVCLab/lilt-roberta-en-base tags: - generated_from_trainer model-index: - name: lilt-en-funsd results: [] --- # lilt-en-funsd This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 1.6706 - eval_ANSWER: {'precision': 0.875, 'recall': 0.9082007343941249, 'f1': 0.8912912912912913, 'number': 817} - eval_HEADER: {'precision': 0.6666666666666666, 'recall': 0.5714285714285714, 'f1': 0.6153846153846153, 'number': 119} - eval_QUESTION: {'precision': 0.8880931065353626, 'recall': 0.9210770659238626, 'f1': 0.9042844120328168, 'number': 1077} - eval_overall_precision: 0.8718 - eval_overall_recall: 0.8952 - eval_overall_f1: 0.8833 - eval_overall_accuracy: 0.8026 - eval_runtime: 50.8863 - eval_samples_per_second: 0.983 - eval_steps_per_second: 0.138 - epoch: 90.8421 - step: 1726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cpu - Datasets 2.20.0 - Tokenizers 0.19.1