--- library_name: transformers tags: [] --- # [E5-V: Universal Embeddings with Multimodal Large Language Models](https://arxiv.org/abs/2407.12580) E5-V is fine-tuned based on lmms-lab/llama3-llava-next-8b. ## Overview We propose a framework, called E5-V, to adpat MLLMs for achieving multimodal embeddings. E5-V effectively bridges the modality gap between different types of inputs, demonstrating strong performance in multimodal embeddings even without fine-tuning. We also propose a single modality training approach for E5-V, where the model is trained exclusively on text pairs, demonstrating better performance than multimodal training. More details can be found in https://github.com/kongds/E5-V ## Example ``` python import torch import torch.nn.functional as F import requests from PIL import Image from transformers import AutoTokenizer from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration llama3_template = '<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n \n' processor = LlavaNextProcessor.from_pretrained('royokong/e5-v') model = LlavaNextForConditionalGeneration.from_pretrained('royokong/e5-v', torch_dtype=torch.float16).cuda() img_prompt = llama3_template.format('\nSummary above image in one word: ') text_prompt = llama3_template.format('\nSummary above sentence in one word: ') urls = ['https://upload.wikimedia.org/wikipedia/commons/thumb/4/47/American_Eskimo_Dog.jpg/360px-American_Eskimo_Dog.jpg', 'https://upload.wikimedia.org/wikipedia/commons/thumb/b/b6/Felis_catus-cat_on_snow.jpg/179px-Felis_catus-cat_on_snow.jpg'] images = [Image.open(requests.get(url, stream=True).raw) for url in urls] texts = ['A dog sitting in the grass.', 'A cat standing in the snow.'] text_inputs = processor([text_prompt.replace('', text) for text in texts], return_tensors="pt", padding=True).to('cuda') img_inputs = processor([img_prompt]*len(images), images, return_tensors="pt", padding=True).to('cuda') with torch.no_grad(): text_embs = model(**text_inputs, output_hidden_states=True, return_dict=True).hidden_states[-1][:, -1, :] img_embs = model(**img_inputs, output_hidden_states=True, return_dict=True).hidden_states[-1][:, -1, :] text_embs = F.normalize(text_embs, dim=-1) img_embs = F.normalize(img_embs, dim=-1) print(text_embs @ img_embs.t()) ```