rohitashva
commited on
Commit
•
2e33b41
1
Parent(s):
14e6375
Update README.md
Browse files
README.md
CHANGED
@@ -12,2586 +12,100 @@ tags:
|
|
12 |
- dementia
|
13 |
- dementia disease
|
14 |
language: en
|
15 |
-
inference:
|
16 |
license: apache-2.0
|
17 |
-
model-index:
|
18 |
-
- name: INSTRUCTOR
|
19 |
-
results:
|
20 |
-
- task:
|
21 |
-
type: Classification
|
22 |
-
dataset:
|
23 |
-
type: mteb/amazon_counterfactual
|
24 |
-
name: MTEB AmazonCounterfactualClassification (en)
|
25 |
-
config: en
|
26 |
-
split: test
|
27 |
-
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
28 |
-
metrics:
|
29 |
-
- type: accuracy
|
30 |
-
value: 88.13432835820896
|
31 |
-
- type: ap
|
32 |
-
value: 59.298209334395665
|
33 |
-
- type: f1
|
34 |
-
value: 83.31769058643586
|
35 |
-
- task:
|
36 |
-
type: Classification
|
37 |
-
dataset:
|
38 |
-
type: mteb/amazon_polarity
|
39 |
-
name: MTEB AmazonPolarityClassification
|
40 |
-
config: default
|
41 |
-
split: test
|
42 |
-
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
43 |
-
metrics:
|
44 |
-
- type: accuracy
|
45 |
-
value: 91.526375
|
46 |
-
- type: ap
|
47 |
-
value: 88.16327709705504
|
48 |
-
- type: f1
|
49 |
-
value: 91.51095801287843
|
50 |
-
- task:
|
51 |
-
type: Classification
|
52 |
-
dataset:
|
53 |
-
type: mteb/amazon_reviews_multi
|
54 |
-
name: MTEB AmazonReviewsClassification (en)
|
55 |
-
config: en
|
56 |
-
split: test
|
57 |
-
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
58 |
-
metrics:
|
59 |
-
- type: accuracy
|
60 |
-
value: 47.856
|
61 |
-
- type: f1
|
62 |
-
value: 45.41490917650942
|
63 |
-
- task:
|
64 |
-
type: Retrieval
|
65 |
-
dataset:
|
66 |
-
type: arguana
|
67 |
-
name: MTEB ArguAna
|
68 |
-
config: default
|
69 |
-
split: test
|
70 |
-
revision: None
|
71 |
-
metrics:
|
72 |
-
- type: map_at_1
|
73 |
-
value: 31.223
|
74 |
-
- type: map_at_10
|
75 |
-
value: 47.947
|
76 |
-
- type: map_at_100
|
77 |
-
value: 48.742000000000004
|
78 |
-
- type: map_at_1000
|
79 |
-
value: 48.745
|
80 |
-
- type: map_at_3
|
81 |
-
value: 43.137
|
82 |
-
- type: map_at_5
|
83 |
-
value: 45.992
|
84 |
-
- type: mrr_at_1
|
85 |
-
value: 32.432
|
86 |
-
- type: mrr_at_10
|
87 |
-
value: 48.4
|
88 |
-
- type: mrr_at_100
|
89 |
-
value: 49.202
|
90 |
-
- type: mrr_at_1000
|
91 |
-
value: 49.205
|
92 |
-
- type: mrr_at_3
|
93 |
-
value: 43.551
|
94 |
-
- type: mrr_at_5
|
95 |
-
value: 46.467999999999996
|
96 |
-
- type: ndcg_at_1
|
97 |
-
value: 31.223
|
98 |
-
- type: ndcg_at_10
|
99 |
-
value: 57.045
|
100 |
-
- type: ndcg_at_100
|
101 |
-
value: 60.175
|
102 |
-
- type: ndcg_at_1000
|
103 |
-
value: 60.233000000000004
|
104 |
-
- type: ndcg_at_3
|
105 |
-
value: 47.171
|
106 |
-
- type: ndcg_at_5
|
107 |
-
value: 52.322
|
108 |
-
- type: precision_at_1
|
109 |
-
value: 31.223
|
110 |
-
- type: precision_at_10
|
111 |
-
value: 8.599
|
112 |
-
- type: precision_at_100
|
113 |
-
value: 0.991
|
114 |
-
- type: precision_at_1000
|
115 |
-
value: 0.1
|
116 |
-
- type: precision_at_3
|
117 |
-
value: 19.63
|
118 |
-
- type: precision_at_5
|
119 |
-
value: 14.282
|
120 |
-
- type: recall_at_1
|
121 |
-
value: 31.223
|
122 |
-
- type: recall_at_10
|
123 |
-
value: 85.989
|
124 |
-
- type: recall_at_100
|
125 |
-
value: 99.075
|
126 |
-
- type: recall_at_1000
|
127 |
-
value: 99.502
|
128 |
-
- type: recall_at_3
|
129 |
-
value: 58.89
|
130 |
-
- type: recall_at_5
|
131 |
-
value: 71.408
|
132 |
-
- task:
|
133 |
-
type: Clustering
|
134 |
-
dataset:
|
135 |
-
type: mteb/arxiv-clustering-p2p
|
136 |
-
name: MTEB ArxivClusteringP2P
|
137 |
-
config: default
|
138 |
-
split: test
|
139 |
-
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
140 |
-
metrics:
|
141 |
-
- type: v_measure
|
142 |
-
value: 43.1621946393635
|
143 |
-
- task:
|
144 |
-
type: Clustering
|
145 |
-
dataset:
|
146 |
-
type: mteb/arxiv-clustering-s2s
|
147 |
-
name: MTEB ArxivClusteringS2S
|
148 |
-
config: default
|
149 |
-
split: test
|
150 |
-
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
151 |
-
metrics:
|
152 |
-
- type: v_measure
|
153 |
-
value: 32.56417132407894
|
154 |
-
- task:
|
155 |
-
type: Reranking
|
156 |
-
dataset:
|
157 |
-
type: mteb/askubuntudupquestions-reranking
|
158 |
-
name: MTEB AskUbuntuDupQuestions
|
159 |
-
config: default
|
160 |
-
split: test
|
161 |
-
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
162 |
-
metrics:
|
163 |
-
- type: map
|
164 |
-
value: 64.29539304390207
|
165 |
-
- type: mrr
|
166 |
-
value: 76.44484017060196
|
167 |
-
- task:
|
168 |
-
type: STS
|
169 |
-
dataset:
|
170 |
-
type: mteb/biosses-sts
|
171 |
-
name: MTEB BIOSSES
|
172 |
-
config: default
|
173 |
-
split: test
|
174 |
-
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
175 |
-
metrics:
|
176 |
-
- type: cos_sim_spearman
|
177 |
-
value: 84.38746499431112
|
178 |
-
- task:
|
179 |
-
type: Classification
|
180 |
-
dataset:
|
181 |
-
type: mteb/banking77
|
182 |
-
name: MTEB Banking77Classification
|
183 |
-
config: default
|
184 |
-
split: test
|
185 |
-
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
186 |
-
metrics:
|
187 |
-
- type: accuracy
|
188 |
-
value: 78.51298701298701
|
189 |
-
- type: f1
|
190 |
-
value: 77.49041754069235
|
191 |
-
- task:
|
192 |
-
type: Clustering
|
193 |
-
dataset:
|
194 |
-
type: mteb/biorxiv-clustering-p2p
|
195 |
-
name: MTEB BiorxivClusteringP2P
|
196 |
-
config: default
|
197 |
-
split: test
|
198 |
-
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
199 |
-
metrics:
|
200 |
-
- type: v_measure
|
201 |
-
value: 37.61848554098577
|
202 |
-
- task:
|
203 |
-
type: Clustering
|
204 |
-
dataset:
|
205 |
-
type: mteb/biorxiv-clustering-s2s
|
206 |
-
name: MTEB BiorxivClusteringS2S
|
207 |
-
config: default
|
208 |
-
split: test
|
209 |
-
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
210 |
-
metrics:
|
211 |
-
- type: v_measure
|
212 |
-
value: 31.32623280148178
|
213 |
-
- task:
|
214 |
-
type: Retrieval
|
215 |
-
dataset:
|
216 |
-
type: BeIR/cqadupstack
|
217 |
-
name: MTEB CQADupstackAndroidRetrieval
|
218 |
-
config: default
|
219 |
-
split: test
|
220 |
-
revision: None
|
221 |
-
metrics:
|
222 |
-
- type: map_at_1
|
223 |
-
value: 35.803000000000004
|
224 |
-
- type: map_at_10
|
225 |
-
value: 48.848
|
226 |
-
- type: map_at_100
|
227 |
-
value: 50.5
|
228 |
-
- type: map_at_1000
|
229 |
-
value: 50.602999999999994
|
230 |
-
- type: map_at_3
|
231 |
-
value: 45.111000000000004
|
232 |
-
- type: map_at_5
|
233 |
-
value: 47.202
|
234 |
-
- type: mrr_at_1
|
235 |
-
value: 44.635000000000005
|
236 |
-
- type: mrr_at_10
|
237 |
-
value: 55.593
|
238 |
-
- type: mrr_at_100
|
239 |
-
value: 56.169999999999995
|
240 |
-
- type: mrr_at_1000
|
241 |
-
value: 56.19499999999999
|
242 |
-
- type: mrr_at_3
|
243 |
-
value: 53.361999999999995
|
244 |
-
- type: mrr_at_5
|
245 |
-
value: 54.806999999999995
|
246 |
-
- type: ndcg_at_1
|
247 |
-
value: 44.635000000000005
|
248 |
-
- type: ndcg_at_10
|
249 |
-
value: 55.899
|
250 |
-
- type: ndcg_at_100
|
251 |
-
value: 60.958
|
252 |
-
- type: ndcg_at_1000
|
253 |
-
value: 62.302
|
254 |
-
- type: ndcg_at_3
|
255 |
-
value: 51.051
|
256 |
-
- type: ndcg_at_5
|
257 |
-
value: 53.351000000000006
|
258 |
-
- type: precision_at_1
|
259 |
-
value: 44.635000000000005
|
260 |
-
- type: precision_at_10
|
261 |
-
value: 10.786999999999999
|
262 |
-
- type: precision_at_100
|
263 |
-
value: 1.6580000000000001
|
264 |
-
- type: precision_at_1000
|
265 |
-
value: 0.213
|
266 |
-
- type: precision_at_3
|
267 |
-
value: 24.893
|
268 |
-
- type: precision_at_5
|
269 |
-
value: 17.740000000000002
|
270 |
-
- type: recall_at_1
|
271 |
-
value: 35.803000000000004
|
272 |
-
- type: recall_at_10
|
273 |
-
value: 68.657
|
274 |
-
- type: recall_at_100
|
275 |
-
value: 89.77199999999999
|
276 |
-
- type: recall_at_1000
|
277 |
-
value: 97.67
|
278 |
-
- type: recall_at_3
|
279 |
-
value: 54.066
|
280 |
-
- type: recall_at_5
|
281 |
-
value: 60.788
|
282 |
-
- task:
|
283 |
-
type: Retrieval
|
284 |
-
dataset:
|
285 |
-
type: BeIR/cqadupstack
|
286 |
-
name: MTEB CQADupstackEnglishRetrieval
|
287 |
-
config: default
|
288 |
-
split: test
|
289 |
-
revision: None
|
290 |
-
metrics:
|
291 |
-
- type: map_at_1
|
292 |
-
value: 33.706
|
293 |
-
- type: map_at_10
|
294 |
-
value: 44.896
|
295 |
-
- type: map_at_100
|
296 |
-
value: 46.299
|
297 |
-
- type: map_at_1000
|
298 |
-
value: 46.44
|
299 |
-
- type: map_at_3
|
300 |
-
value: 41.721000000000004
|
301 |
-
- type: map_at_5
|
302 |
-
value: 43.486000000000004
|
303 |
-
- type: mrr_at_1
|
304 |
-
value: 41.592
|
305 |
-
- type: mrr_at_10
|
306 |
-
value: 50.529
|
307 |
-
- type: mrr_at_100
|
308 |
-
value: 51.22
|
309 |
-
- type: mrr_at_1000
|
310 |
-
value: 51.258
|
311 |
-
- type: mrr_at_3
|
312 |
-
value: 48.205999999999996
|
313 |
-
- type: mrr_at_5
|
314 |
-
value: 49.528
|
315 |
-
- type: ndcg_at_1
|
316 |
-
value: 41.592
|
317 |
-
- type: ndcg_at_10
|
318 |
-
value: 50.77199999999999
|
319 |
-
- type: ndcg_at_100
|
320 |
-
value: 55.383
|
321 |
-
- type: ndcg_at_1000
|
322 |
-
value: 57.288
|
323 |
-
- type: ndcg_at_3
|
324 |
-
value: 46.324
|
325 |
-
- type: ndcg_at_5
|
326 |
-
value: 48.346000000000004
|
327 |
-
- type: precision_at_1
|
328 |
-
value: 41.592
|
329 |
-
- type: precision_at_10
|
330 |
-
value: 9.516
|
331 |
-
- type: precision_at_100
|
332 |
-
value: 1.541
|
333 |
-
- type: precision_at_1000
|
334 |
-
value: 0.2
|
335 |
-
- type: precision_at_3
|
336 |
-
value: 22.399
|
337 |
-
- type: precision_at_5
|
338 |
-
value: 15.770999999999999
|
339 |
-
- type: recall_at_1
|
340 |
-
value: 33.706
|
341 |
-
- type: recall_at_10
|
342 |
-
value: 61.353
|
343 |
-
- type: recall_at_100
|
344 |
-
value: 80.182
|
345 |
-
- type: recall_at_1000
|
346 |
-
value: 91.896
|
347 |
-
- type: recall_at_3
|
348 |
-
value: 48.204
|
349 |
-
- type: recall_at_5
|
350 |
-
value: 53.89699999999999
|
351 |
-
- task:
|
352 |
-
type: Retrieval
|
353 |
-
dataset:
|
354 |
-
type: BeIR/cqadupstack
|
355 |
-
name: MTEB CQADupstackGamingRetrieval
|
356 |
-
config: default
|
357 |
-
split: test
|
358 |
-
revision: None
|
359 |
-
metrics:
|
360 |
-
- type: map_at_1
|
361 |
-
value: 44.424
|
362 |
-
- type: map_at_10
|
363 |
-
value: 57.169000000000004
|
364 |
-
- type: map_at_100
|
365 |
-
value: 58.202
|
366 |
-
- type: map_at_1000
|
367 |
-
value: 58.242000000000004
|
368 |
-
- type: map_at_3
|
369 |
-
value: 53.825
|
370 |
-
- type: map_at_5
|
371 |
-
value: 55.714
|
372 |
-
- type: mrr_at_1
|
373 |
-
value: 50.470000000000006
|
374 |
-
- type: mrr_at_10
|
375 |
-
value: 60.489000000000004
|
376 |
-
- type: mrr_at_100
|
377 |
-
value: 61.096
|
378 |
-
- type: mrr_at_1000
|
379 |
-
value: 61.112
|
380 |
-
- type: mrr_at_3
|
381 |
-
value: 58.192
|
382 |
-
- type: mrr_at_5
|
383 |
-
value: 59.611999999999995
|
384 |
-
- type: ndcg_at_1
|
385 |
-
value: 50.470000000000006
|
386 |
-
- type: ndcg_at_10
|
387 |
-
value: 63.071999999999996
|
388 |
-
- type: ndcg_at_100
|
389 |
-
value: 66.964
|
390 |
-
- type: ndcg_at_1000
|
391 |
-
value: 67.659
|
392 |
-
- type: ndcg_at_3
|
393 |
-
value: 57.74399999999999
|
394 |
-
- type: ndcg_at_5
|
395 |
-
value: 60.367000000000004
|
396 |
-
- type: precision_at_1
|
397 |
-
value: 50.470000000000006
|
398 |
-
- type: precision_at_10
|
399 |
-
value: 10.019
|
400 |
-
- type: precision_at_100
|
401 |
-
value: 1.29
|
402 |
-
- type: precision_at_1000
|
403 |
-
value: 0.13899999999999998
|
404 |
-
- type: precision_at_3
|
405 |
-
value: 25.558999999999997
|
406 |
-
- type: precision_at_5
|
407 |
-
value: 17.467
|
408 |
-
- type: recall_at_1
|
409 |
-
value: 44.424
|
410 |
-
- type: recall_at_10
|
411 |
-
value: 77.02
|
412 |
-
- type: recall_at_100
|
413 |
-
value: 93.738
|
414 |
-
- type: recall_at_1000
|
415 |
-
value: 98.451
|
416 |
-
- type: recall_at_3
|
417 |
-
value: 62.888
|
418 |
-
- type: recall_at_5
|
419 |
-
value: 69.138
|
420 |
-
- task:
|
421 |
-
type: Retrieval
|
422 |
-
dataset:
|
423 |
-
type: BeIR/cqadupstack
|
424 |
-
name: MTEB CQADupstackGisRetrieval
|
425 |
-
config: default
|
426 |
-
split: test
|
427 |
-
revision: None
|
428 |
-
metrics:
|
429 |
-
- type: map_at_1
|
430 |
-
value: 26.294
|
431 |
-
- type: map_at_10
|
432 |
-
value: 34.503
|
433 |
-
- type: map_at_100
|
434 |
-
value: 35.641
|
435 |
-
- type: map_at_1000
|
436 |
-
value: 35.724000000000004
|
437 |
-
- type: map_at_3
|
438 |
-
value: 31.753999999999998
|
439 |
-
- type: map_at_5
|
440 |
-
value: 33.190999999999995
|
441 |
-
- type: mrr_at_1
|
442 |
-
value: 28.362
|
443 |
-
- type: mrr_at_10
|
444 |
-
value: 36.53
|
445 |
-
- type: mrr_at_100
|
446 |
-
value: 37.541000000000004
|
447 |
-
- type: mrr_at_1000
|
448 |
-
value: 37.602000000000004
|
449 |
-
- type: mrr_at_3
|
450 |
-
value: 33.917
|
451 |
-
- type: mrr_at_5
|
452 |
-
value: 35.358000000000004
|
453 |
-
- type: ndcg_at_1
|
454 |
-
value: 28.362
|
455 |
-
- type: ndcg_at_10
|
456 |
-
value: 39.513999999999996
|
457 |
-
- type: ndcg_at_100
|
458 |
-
value: 44.815
|
459 |
-
- type: ndcg_at_1000
|
460 |
-
value: 46.839
|
461 |
-
- type: ndcg_at_3
|
462 |
-
value: 34.02
|
463 |
-
- type: ndcg_at_5
|
464 |
-
value: 36.522
|
465 |
-
- type: precision_at_1
|
466 |
-
value: 28.362
|
467 |
-
- type: precision_at_10
|
468 |
-
value: 6.101999999999999
|
469 |
-
- type: precision_at_100
|
470 |
-
value: 0.9129999999999999
|
471 |
-
- type: precision_at_1000
|
472 |
-
value: 0.11399999999999999
|
473 |
-
- type: precision_at_3
|
474 |
-
value: 14.161999999999999
|
475 |
-
- type: precision_at_5
|
476 |
-
value: 9.966
|
477 |
-
- type: recall_at_1
|
478 |
-
value: 26.294
|
479 |
-
- type: recall_at_10
|
480 |
-
value: 53.098
|
481 |
-
- type: recall_at_100
|
482 |
-
value: 76.877
|
483 |
-
- type: recall_at_1000
|
484 |
-
value: 91.834
|
485 |
-
- type: recall_at_3
|
486 |
-
value: 38.266
|
487 |
-
- type: recall_at_5
|
488 |
-
value: 44.287
|
489 |
-
- task:
|
490 |
-
type: Retrieval
|
491 |
-
dataset:
|
492 |
-
type: BeIR/cqadupstack
|
493 |
-
name: MTEB CQADupstackMathematicaRetrieval
|
494 |
-
config: default
|
495 |
-
split: test
|
496 |
-
revision: None
|
497 |
-
metrics:
|
498 |
-
- type: map_at_1
|
499 |
-
value: 16.407
|
500 |
-
- type: map_at_10
|
501 |
-
value: 25.185999999999996
|
502 |
-
- type: map_at_100
|
503 |
-
value: 26.533
|
504 |
-
- type: map_at_1000
|
505 |
-
value: 26.657999999999998
|
506 |
-
- type: map_at_3
|
507 |
-
value: 22.201999999999998
|
508 |
-
- type: map_at_5
|
509 |
-
value: 23.923
|
510 |
-
- type: mrr_at_1
|
511 |
-
value: 20.522000000000002
|
512 |
-
- type: mrr_at_10
|
513 |
-
value: 29.522
|
514 |
-
- type: mrr_at_100
|
515 |
-
value: 30.644
|
516 |
-
- type: mrr_at_1000
|
517 |
-
value: 30.713
|
518 |
-
- type: mrr_at_3
|
519 |
-
value: 26.679000000000002
|
520 |
-
- type: mrr_at_5
|
521 |
-
value: 28.483000000000004
|
522 |
-
- type: ndcg_at_1
|
523 |
-
value: 20.522000000000002
|
524 |
-
- type: ndcg_at_10
|
525 |
-
value: 30.656
|
526 |
-
- type: ndcg_at_100
|
527 |
-
value: 36.864999999999995
|
528 |
-
- type: ndcg_at_1000
|
529 |
-
value: 39.675
|
530 |
-
- type: ndcg_at_3
|
531 |
-
value: 25.319000000000003
|
532 |
-
- type: ndcg_at_5
|
533 |
-
value: 27.992
|
534 |
-
- type: precision_at_1
|
535 |
-
value: 20.522000000000002
|
536 |
-
- type: precision_at_10
|
537 |
-
value: 5.795999999999999
|
538 |
-
- type: precision_at_100
|
539 |
-
value: 1.027
|
540 |
-
- type: precision_at_1000
|
541 |
-
value: 0.13999999999999999
|
542 |
-
- type: precision_at_3
|
543 |
-
value: 12.396
|
544 |
-
- type: precision_at_5
|
545 |
-
value: 9.328
|
546 |
-
- type: recall_at_1
|
547 |
-
value: 16.407
|
548 |
-
- type: recall_at_10
|
549 |
-
value: 43.164
|
550 |
-
- type: recall_at_100
|
551 |
-
value: 69.695
|
552 |
-
- type: recall_at_1000
|
553 |
-
value: 89.41900000000001
|
554 |
-
- type: recall_at_3
|
555 |
-
value: 28.634999999999998
|
556 |
-
- type: recall_at_5
|
557 |
-
value: 35.308
|
558 |
-
- task:
|
559 |
-
type: Retrieval
|
560 |
-
dataset:
|
561 |
-
type: BeIR/cqadupstack
|
562 |
-
name: MTEB CQADupstackPhysicsRetrieval
|
563 |
-
config: default
|
564 |
-
split: test
|
565 |
-
revision: None
|
566 |
-
metrics:
|
567 |
-
- type: map_at_1
|
568 |
-
value: 30.473
|
569 |
-
- type: map_at_10
|
570 |
-
value: 41.676
|
571 |
-
- type: map_at_100
|
572 |
-
value: 43.120999999999995
|
573 |
-
- type: map_at_1000
|
574 |
-
value: 43.230000000000004
|
575 |
-
- type: map_at_3
|
576 |
-
value: 38.306000000000004
|
577 |
-
- type: map_at_5
|
578 |
-
value: 40.355999999999995
|
579 |
-
- type: mrr_at_1
|
580 |
-
value: 37.536
|
581 |
-
- type: mrr_at_10
|
582 |
-
value: 47.643
|
583 |
-
- type: mrr_at_100
|
584 |
-
value: 48.508
|
585 |
-
- type: mrr_at_1000
|
586 |
-
value: 48.551
|
587 |
-
- type: mrr_at_3
|
588 |
-
value: 45.348
|
589 |
-
- type: mrr_at_5
|
590 |
-
value: 46.744
|
591 |
-
- type: ndcg_at_1
|
592 |
-
value: 37.536
|
593 |
-
- type: ndcg_at_10
|
594 |
-
value: 47.823
|
595 |
-
- type: ndcg_at_100
|
596 |
-
value: 53.395
|
597 |
-
- type: ndcg_at_1000
|
598 |
-
value: 55.271
|
599 |
-
- type: ndcg_at_3
|
600 |
-
value: 42.768
|
601 |
-
- type: ndcg_at_5
|
602 |
-
value: 45.373000000000005
|
603 |
-
- type: precision_at_1
|
604 |
-
value: 37.536
|
605 |
-
- type: precision_at_10
|
606 |
-
value: 8.681
|
607 |
-
- type: precision_at_100
|
608 |
-
value: 1.34
|
609 |
-
- type: precision_at_1000
|
610 |
-
value: 0.165
|
611 |
-
- type: precision_at_3
|
612 |
-
value: 20.468
|
613 |
-
- type: precision_at_5
|
614 |
-
value: 14.495
|
615 |
-
- type: recall_at_1
|
616 |
-
value: 30.473
|
617 |
-
- type: recall_at_10
|
618 |
-
value: 60.092999999999996
|
619 |
-
- type: recall_at_100
|
620 |
-
value: 82.733
|
621 |
-
- type: recall_at_1000
|
622 |
-
value: 94.875
|
623 |
-
- type: recall_at_3
|
624 |
-
value: 45.734
|
625 |
-
- type: recall_at_5
|
626 |
-
value: 52.691
|
627 |
-
- task:
|
628 |
-
type: Retrieval
|
629 |
-
dataset:
|
630 |
-
type: BeIR/cqadupstack
|
631 |
-
name: MTEB CQADupstackProgrammersRetrieval
|
632 |
-
config: default
|
633 |
-
split: test
|
634 |
-
revision: None
|
635 |
-
metrics:
|
636 |
-
- type: map_at_1
|
637 |
-
value: 29.976000000000003
|
638 |
-
- type: map_at_10
|
639 |
-
value: 41.097
|
640 |
-
- type: map_at_100
|
641 |
-
value: 42.547000000000004
|
642 |
-
- type: map_at_1000
|
643 |
-
value: 42.659000000000006
|
644 |
-
- type: map_at_3
|
645 |
-
value: 37.251
|
646 |
-
- type: map_at_5
|
647 |
-
value: 39.493
|
648 |
-
- type: mrr_at_1
|
649 |
-
value: 37.557
|
650 |
-
- type: mrr_at_10
|
651 |
-
value: 46.605000000000004
|
652 |
-
- type: mrr_at_100
|
653 |
-
value: 47.487
|
654 |
-
- type: mrr_at_1000
|
655 |
-
value: 47.54
|
656 |
-
- type: mrr_at_3
|
657 |
-
value: 43.721
|
658 |
-
- type: mrr_at_5
|
659 |
-
value: 45.411
|
660 |
-
- type: ndcg_at_1
|
661 |
-
value: 37.557
|
662 |
-
- type: ndcg_at_10
|
663 |
-
value: 47.449000000000005
|
664 |
-
- type: ndcg_at_100
|
665 |
-
value: 53.052
|
666 |
-
- type: ndcg_at_1000
|
667 |
-
value: 55.010999999999996
|
668 |
-
- type: ndcg_at_3
|
669 |
-
value: 41.439
|
670 |
-
- type: ndcg_at_5
|
671 |
-
value: 44.292
|
672 |
-
- type: precision_at_1
|
673 |
-
value: 37.557
|
674 |
-
- type: precision_at_10
|
675 |
-
value: 8.847
|
676 |
-
- type: precision_at_100
|
677 |
-
value: 1.357
|
678 |
-
- type: precision_at_1000
|
679 |
-
value: 0.16999999999999998
|
680 |
-
- type: precision_at_3
|
681 |
-
value: 20.091
|
682 |
-
- type: precision_at_5
|
683 |
-
value: 14.384
|
684 |
-
- type: recall_at_1
|
685 |
-
value: 29.976000000000003
|
686 |
-
- type: recall_at_10
|
687 |
-
value: 60.99099999999999
|
688 |
-
- type: recall_at_100
|
689 |
-
value: 84.245
|
690 |
-
- type: recall_at_1000
|
691 |
-
value: 96.97200000000001
|
692 |
-
- type: recall_at_3
|
693 |
-
value: 43.794
|
694 |
-
- type: recall_at_5
|
695 |
-
value: 51.778999999999996
|
696 |
-
- task:
|
697 |
-
type: Retrieval
|
698 |
-
dataset:
|
699 |
-
type: BeIR/cqadupstack
|
700 |
-
name: MTEB CQADupstackRetrieval
|
701 |
-
config: default
|
702 |
-
split: test
|
703 |
-
revision: None
|
704 |
-
metrics:
|
705 |
-
- type: map_at_1
|
706 |
-
value: 28.099166666666665
|
707 |
-
- type: map_at_10
|
708 |
-
value: 38.1365
|
709 |
-
- type: map_at_100
|
710 |
-
value: 39.44491666666667
|
711 |
-
- type: map_at_1000
|
712 |
-
value: 39.55858333333334
|
713 |
-
- type: map_at_3
|
714 |
-
value: 35.03641666666666
|
715 |
-
- type: map_at_5
|
716 |
-
value: 36.79833333333334
|
717 |
-
- type: mrr_at_1
|
718 |
-
value: 33.39966666666667
|
719 |
-
- type: mrr_at_10
|
720 |
-
value: 42.42583333333333
|
721 |
-
- type: mrr_at_100
|
722 |
-
value: 43.28575
|
723 |
-
- type: mrr_at_1000
|
724 |
-
value: 43.33741666666667
|
725 |
-
- type: mrr_at_3
|
726 |
-
value: 39.94975
|
727 |
-
- type: mrr_at_5
|
728 |
-
value: 41.41633333333334
|
729 |
-
- type: ndcg_at_1
|
730 |
-
value: 33.39966666666667
|
731 |
-
- type: ndcg_at_10
|
732 |
-
value: 43.81741666666667
|
733 |
-
- type: ndcg_at_100
|
734 |
-
value: 49.08166666666667
|
735 |
-
- type: ndcg_at_1000
|
736 |
-
value: 51.121166666666674
|
737 |
-
- type: ndcg_at_3
|
738 |
-
value: 38.73575
|
739 |
-
- type: ndcg_at_5
|
740 |
-
value: 41.18158333333333
|
741 |
-
- type: precision_at_1
|
742 |
-
value: 33.39966666666667
|
743 |
-
- type: precision_at_10
|
744 |
-
value: 7.738916666666667
|
745 |
-
- type: precision_at_100
|
746 |
-
value: 1.2265833333333331
|
747 |
-
- type: precision_at_1000
|
748 |
-
value: 0.15983333333333336
|
749 |
-
- type: precision_at_3
|
750 |
-
value: 17.967416666666665
|
751 |
-
- type: precision_at_5
|
752 |
-
value: 12.78675
|
753 |
-
- type: recall_at_1
|
754 |
-
value: 28.099166666666665
|
755 |
-
- type: recall_at_10
|
756 |
-
value: 56.27049999999999
|
757 |
-
- type: recall_at_100
|
758 |
-
value: 78.93291666666667
|
759 |
-
- type: recall_at_1000
|
760 |
-
value: 92.81608333333334
|
761 |
-
- type: recall_at_3
|
762 |
-
value: 42.09775
|
763 |
-
- type: recall_at_5
|
764 |
-
value: 48.42533333333334
|
765 |
-
- task:
|
766 |
-
type: Retrieval
|
767 |
-
dataset:
|
768 |
-
type: BeIR/cqadupstack
|
769 |
-
name: MTEB CQADupstackStatsRetrieval
|
770 |
-
config: default
|
771 |
-
split: test
|
772 |
-
revision: None
|
773 |
-
metrics:
|
774 |
-
- type: map_at_1
|
775 |
-
value: 23.663
|
776 |
-
- type: map_at_10
|
777 |
-
value: 30.377
|
778 |
-
- type: map_at_100
|
779 |
-
value: 31.426
|
780 |
-
- type: map_at_1000
|
781 |
-
value: 31.519000000000002
|
782 |
-
- type: map_at_3
|
783 |
-
value: 28.069
|
784 |
-
- type: map_at_5
|
785 |
-
value: 29.256999999999998
|
786 |
-
- type: mrr_at_1
|
787 |
-
value: 26.687
|
788 |
-
- type: mrr_at_10
|
789 |
-
value: 33.107
|
790 |
-
- type: mrr_at_100
|
791 |
-
value: 34.055
|
792 |
-
- type: mrr_at_1000
|
793 |
-
value: 34.117999999999995
|
794 |
-
- type: mrr_at_3
|
795 |
-
value: 31.058000000000003
|
796 |
-
- type: mrr_at_5
|
797 |
-
value: 32.14
|
798 |
-
- type: ndcg_at_1
|
799 |
-
value: 26.687
|
800 |
-
- type: ndcg_at_10
|
801 |
-
value: 34.615
|
802 |
-
- type: ndcg_at_100
|
803 |
-
value: 39.776
|
804 |
-
- type: ndcg_at_1000
|
805 |
-
value: 42.05
|
806 |
-
- type: ndcg_at_3
|
807 |
-
value: 30.322
|
808 |
-
- type: ndcg_at_5
|
809 |
-
value: 32.157000000000004
|
810 |
-
- type: precision_at_1
|
811 |
-
value: 26.687
|
812 |
-
- type: precision_at_10
|
813 |
-
value: 5.491
|
814 |
-
- type: precision_at_100
|
815 |
-
value: 0.877
|
816 |
-
- type: precision_at_1000
|
817 |
-
value: 0.11499999999999999
|
818 |
-
- type: precision_at_3
|
819 |
-
value: 13.139000000000001
|
820 |
-
- type: precision_at_5
|
821 |
-
value: 9.049
|
822 |
-
- type: recall_at_1
|
823 |
-
value: 23.663
|
824 |
-
- type: recall_at_10
|
825 |
-
value: 45.035
|
826 |
-
- type: recall_at_100
|
827 |
-
value: 68.554
|
828 |
-
- type: recall_at_1000
|
829 |
-
value: 85.077
|
830 |
-
- type: recall_at_3
|
831 |
-
value: 32.982
|
832 |
-
- type: recall_at_5
|
833 |
-
value: 37.688
|
834 |
-
- task:
|
835 |
-
type: Retrieval
|
836 |
-
dataset:
|
837 |
-
type: BeIR/cqadupstack
|
838 |
-
name: MTEB CQADupstackTexRetrieval
|
839 |
-
config: default
|
840 |
-
split: test
|
841 |
-
revision: None
|
842 |
-
metrics:
|
843 |
-
- type: map_at_1
|
844 |
-
value: 17.403
|
845 |
-
- type: map_at_10
|
846 |
-
value: 25.197000000000003
|
847 |
-
- type: map_at_100
|
848 |
-
value: 26.355
|
849 |
-
- type: map_at_1000
|
850 |
-
value: 26.487
|
851 |
-
- type: map_at_3
|
852 |
-
value: 22.733
|
853 |
-
- type: map_at_5
|
854 |
-
value: 24.114
|
855 |
-
- type: mrr_at_1
|
856 |
-
value: 21.37
|
857 |
-
- type: mrr_at_10
|
858 |
-
value: 29.091
|
859 |
-
- type: mrr_at_100
|
860 |
-
value: 30.018
|
861 |
-
- type: mrr_at_1000
|
862 |
-
value: 30.096
|
863 |
-
- type: mrr_at_3
|
864 |
-
value: 26.887
|
865 |
-
- type: mrr_at_5
|
866 |
-
value: 28.157
|
867 |
-
- type: ndcg_at_1
|
868 |
-
value: 21.37
|
869 |
-
- type: ndcg_at_10
|
870 |
-
value: 30.026000000000003
|
871 |
-
- type: ndcg_at_100
|
872 |
-
value: 35.416
|
873 |
-
- type: ndcg_at_1000
|
874 |
-
value: 38.45
|
875 |
-
- type: ndcg_at_3
|
876 |
-
value: 25.764
|
877 |
-
- type: ndcg_at_5
|
878 |
-
value: 27.742
|
879 |
-
- type: precision_at_1
|
880 |
-
value: 21.37
|
881 |
-
- type: precision_at_10
|
882 |
-
value: 5.609
|
883 |
-
- type: precision_at_100
|
884 |
-
value: 0.9860000000000001
|
885 |
-
- type: precision_at_1000
|
886 |
-
value: 0.14300000000000002
|
887 |
-
- type: precision_at_3
|
888 |
-
value: 12.423
|
889 |
-
- type: precision_at_5
|
890 |
-
value: 9.009
|
891 |
-
- type: recall_at_1
|
892 |
-
value: 17.403
|
893 |
-
- type: recall_at_10
|
894 |
-
value: 40.573
|
895 |
-
- type: recall_at_100
|
896 |
-
value: 64.818
|
897 |
-
- type: recall_at_1000
|
898 |
-
value: 86.53699999999999
|
899 |
-
- type: recall_at_3
|
900 |
-
value: 28.493000000000002
|
901 |
-
- type: recall_at_5
|
902 |
-
value: 33.660000000000004
|
903 |
-
- task:
|
904 |
-
type: Retrieval
|
905 |
-
dataset:
|
906 |
-
type: BeIR/cqadupstack
|
907 |
-
name: MTEB CQADupstackUnixRetrieval
|
908 |
-
config: default
|
909 |
-
split: test
|
910 |
-
revision: None
|
911 |
-
metrics:
|
912 |
-
- type: map_at_1
|
913 |
-
value: 28.639
|
914 |
-
- type: map_at_10
|
915 |
-
value: 38.951
|
916 |
-
- type: map_at_100
|
917 |
-
value: 40.238
|
918 |
-
- type: map_at_1000
|
919 |
-
value: 40.327
|
920 |
-
- type: map_at_3
|
921 |
-
value: 35.842
|
922 |
-
- type: map_at_5
|
923 |
-
value: 37.617
|
924 |
-
- type: mrr_at_1
|
925 |
-
value: 33.769
|
926 |
-
- type: mrr_at_10
|
927 |
-
value: 43.088
|
928 |
-
- type: mrr_at_100
|
929 |
-
value: 44.03
|
930 |
-
- type: mrr_at_1000
|
931 |
-
value: 44.072
|
932 |
-
- type: mrr_at_3
|
933 |
-
value: 40.656
|
934 |
-
- type: mrr_at_5
|
935 |
-
value: 42.138999999999996
|
936 |
-
- type: ndcg_at_1
|
937 |
-
value: 33.769
|
938 |
-
- type: ndcg_at_10
|
939 |
-
value: 44.676
|
940 |
-
- type: ndcg_at_100
|
941 |
-
value: 50.416000000000004
|
942 |
-
- type: ndcg_at_1000
|
943 |
-
value: 52.227999999999994
|
944 |
-
- type: ndcg_at_3
|
945 |
-
value: 39.494
|
946 |
-
- type: ndcg_at_5
|
947 |
-
value: 42.013
|
948 |
-
- type: precision_at_1
|
949 |
-
value: 33.769
|
950 |
-
- type: precision_at_10
|
951 |
-
value: 7.668
|
952 |
-
- type: precision_at_100
|
953 |
-
value: 1.18
|
954 |
-
- type: precision_at_1000
|
955 |
-
value: 0.145
|
956 |
-
- type: precision_at_3
|
957 |
-
value: 18.221
|
958 |
-
- type: precision_at_5
|
959 |
-
value: 12.966
|
960 |
-
- type: recall_at_1
|
961 |
-
value: 28.639
|
962 |
-
- type: recall_at_10
|
963 |
-
value: 57.687999999999995
|
964 |
-
- type: recall_at_100
|
965 |
-
value: 82.541
|
966 |
-
- type: recall_at_1000
|
967 |
-
value: 94.896
|
968 |
-
- type: recall_at_3
|
969 |
-
value: 43.651
|
970 |
-
- type: recall_at_5
|
971 |
-
value: 49.925999999999995
|
972 |
-
- task:
|
973 |
-
type: Retrieval
|
974 |
-
dataset:
|
975 |
-
type: BeIR/cqadupstack
|
976 |
-
name: MTEB CQADupstackWebmastersRetrieval
|
977 |
-
config: default
|
978 |
-
split: test
|
979 |
-
revision: None
|
980 |
-
metrics:
|
981 |
-
- type: map_at_1
|
982 |
-
value: 29.57
|
983 |
-
- type: map_at_10
|
984 |
-
value: 40.004
|
985 |
-
- type: map_at_100
|
986 |
-
value: 41.75
|
987 |
-
- type: map_at_1000
|
988 |
-
value: 41.97
|
989 |
-
- type: map_at_3
|
990 |
-
value: 36.788
|
991 |
-
- type: map_at_5
|
992 |
-
value: 38.671
|
993 |
-
- type: mrr_at_1
|
994 |
-
value: 35.375
|
995 |
-
- type: mrr_at_10
|
996 |
-
value: 45.121
|
997 |
-
- type: mrr_at_100
|
998 |
-
value: 45.994
|
999 |
-
- type: mrr_at_1000
|
1000 |
-
value: 46.04
|
1001 |
-
- type: mrr_at_3
|
1002 |
-
value: 42.227
|
1003 |
-
- type: mrr_at_5
|
1004 |
-
value: 43.995
|
1005 |
-
- type: ndcg_at_1
|
1006 |
-
value: 35.375
|
1007 |
-
- type: ndcg_at_10
|
1008 |
-
value: 46.392
|
1009 |
-
- type: ndcg_at_100
|
1010 |
-
value: 52.196
|
1011 |
-
- type: ndcg_at_1000
|
1012 |
-
value: 54.274
|
1013 |
-
- type: ndcg_at_3
|
1014 |
-
value: 41.163
|
1015 |
-
- type: ndcg_at_5
|
1016 |
-
value: 43.813
|
1017 |
-
- type: precision_at_1
|
1018 |
-
value: 35.375
|
1019 |
-
- type: precision_at_10
|
1020 |
-
value: 8.676
|
1021 |
-
- type: precision_at_100
|
1022 |
-
value: 1.678
|
1023 |
-
- type: precision_at_1000
|
1024 |
-
value: 0.253
|
1025 |
-
- type: precision_at_3
|
1026 |
-
value: 19.104
|
1027 |
-
- type: precision_at_5
|
1028 |
-
value: 13.913
|
1029 |
-
- type: recall_at_1
|
1030 |
-
value: 29.57
|
1031 |
-
- type: recall_at_10
|
1032 |
-
value: 58.779
|
1033 |
-
- type: recall_at_100
|
1034 |
-
value: 83.337
|
1035 |
-
- type: recall_at_1000
|
1036 |
-
value: 95.979
|
1037 |
-
- type: recall_at_3
|
1038 |
-
value: 44.005
|
1039 |
-
- type: recall_at_5
|
1040 |
-
value: 50.975
|
1041 |
-
- task:
|
1042 |
-
type: Retrieval
|
1043 |
-
dataset:
|
1044 |
-
type: BeIR/cqadupstack
|
1045 |
-
name: MTEB CQADupstackWordpressRetrieval
|
1046 |
-
config: default
|
1047 |
-
split: test
|
1048 |
-
revision: None
|
1049 |
-
metrics:
|
1050 |
-
- type: map_at_1
|
1051 |
-
value: 20.832
|
1052 |
-
- type: map_at_10
|
1053 |
-
value: 29.733999999999998
|
1054 |
-
- type: map_at_100
|
1055 |
-
value: 30.727
|
1056 |
-
- type: map_at_1000
|
1057 |
-
value: 30.843999999999998
|
1058 |
-
- type: map_at_3
|
1059 |
-
value: 26.834999999999997
|
1060 |
-
- type: map_at_5
|
1061 |
-
value: 28.555999999999997
|
1062 |
-
- type: mrr_at_1
|
1063 |
-
value: 22.921
|
1064 |
-
- type: mrr_at_10
|
1065 |
-
value: 31.791999999999998
|
1066 |
-
- type: mrr_at_100
|
1067 |
-
value: 32.666000000000004
|
1068 |
-
- type: mrr_at_1000
|
1069 |
-
value: 32.751999999999995
|
1070 |
-
- type: mrr_at_3
|
1071 |
-
value: 29.144
|
1072 |
-
- type: mrr_at_5
|
1073 |
-
value: 30.622
|
1074 |
-
- type: ndcg_at_1
|
1075 |
-
value: 22.921
|
1076 |
-
- type: ndcg_at_10
|
1077 |
-
value: 34.915
|
1078 |
-
- type: ndcg_at_100
|
1079 |
-
value: 39.744
|
1080 |
-
- type: ndcg_at_1000
|
1081 |
-
value: 42.407000000000004
|
1082 |
-
- type: ndcg_at_3
|
1083 |
-
value: 29.421000000000003
|
1084 |
-
- type: ndcg_at_5
|
1085 |
-
value: 32.211
|
1086 |
-
- type: precision_at_1
|
1087 |
-
value: 22.921
|
1088 |
-
- type: precision_at_10
|
1089 |
-
value: 5.675
|
1090 |
-
- type: precision_at_100
|
1091 |
-
value: 0.872
|
1092 |
-
- type: precision_at_1000
|
1093 |
-
value: 0.121
|
1094 |
-
- type: precision_at_3
|
1095 |
-
value: 12.753999999999998
|
1096 |
-
- type: precision_at_5
|
1097 |
-
value: 9.353
|
1098 |
-
- type: recall_at_1
|
1099 |
-
value: 20.832
|
1100 |
-
- type: recall_at_10
|
1101 |
-
value: 48.795
|
1102 |
-
- type: recall_at_100
|
1103 |
-
value: 70.703
|
1104 |
-
- type: recall_at_1000
|
1105 |
-
value: 90.187
|
1106 |
-
- type: recall_at_3
|
1107 |
-
value: 34.455000000000005
|
1108 |
-
- type: recall_at_5
|
1109 |
-
value: 40.967
|
1110 |
-
- task:
|
1111 |
-
type: Retrieval
|
1112 |
-
dataset:
|
1113 |
-
type: climate-fever
|
1114 |
-
name: MTEB ClimateFEVER
|
1115 |
-
config: default
|
1116 |
-
split: test
|
1117 |
-
revision: None
|
1118 |
-
metrics:
|
1119 |
-
- type: map_at_1
|
1120 |
-
value: 10.334
|
1121 |
-
- type: map_at_10
|
1122 |
-
value: 19.009999999999998
|
1123 |
-
- type: map_at_100
|
1124 |
-
value: 21.129
|
1125 |
-
- type: map_at_1000
|
1126 |
-
value: 21.328
|
1127 |
-
- type: map_at_3
|
1128 |
-
value: 15.152
|
1129 |
-
- type: map_at_5
|
1130 |
-
value: 17.084
|
1131 |
-
- type: mrr_at_1
|
1132 |
-
value: 23.453
|
1133 |
-
- type: mrr_at_10
|
1134 |
-
value: 36.099
|
1135 |
-
- type: mrr_at_100
|
1136 |
-
value: 37.069
|
1137 |
-
- type: mrr_at_1000
|
1138 |
-
value: 37.104
|
1139 |
-
- type: mrr_at_3
|
1140 |
-
value: 32.096000000000004
|
1141 |
-
- type: mrr_at_5
|
1142 |
-
value: 34.451
|
1143 |
-
- type: ndcg_at_1
|
1144 |
-
value: 23.453
|
1145 |
-
- type: ndcg_at_10
|
1146 |
-
value: 27.739000000000004
|
1147 |
-
- type: ndcg_at_100
|
1148 |
-
value: 35.836
|
1149 |
-
- type: ndcg_at_1000
|
1150 |
-
value: 39.242
|
1151 |
-
- type: ndcg_at_3
|
1152 |
-
value: 21.263
|
1153 |
-
- type: ndcg_at_5
|
1154 |
-
value: 23.677
|
1155 |
-
- type: precision_at_1
|
1156 |
-
value: 23.453
|
1157 |
-
- type: precision_at_10
|
1158 |
-
value: 9.199
|
1159 |
-
- type: precision_at_100
|
1160 |
-
value: 1.791
|
1161 |
-
- type: precision_at_1000
|
1162 |
-
value: 0.242
|
1163 |
-
- type: precision_at_3
|
1164 |
-
value: 16.2
|
1165 |
-
- type: precision_at_5
|
1166 |
-
value: 13.147
|
1167 |
-
- type: recall_at_1
|
1168 |
-
value: 10.334
|
1169 |
-
- type: recall_at_10
|
1170 |
-
value: 35.177
|
1171 |
-
- type: recall_at_100
|
1172 |
-
value: 63.009
|
1173 |
-
- type: recall_at_1000
|
1174 |
-
value: 81.938
|
1175 |
-
- type: recall_at_3
|
1176 |
-
value: 19.914
|
1177 |
-
- type: recall_at_5
|
1178 |
-
value: 26.077
|
1179 |
-
- task:
|
1180 |
-
type: Retrieval
|
1181 |
-
dataset:
|
1182 |
-
type: dbpedia-entity
|
1183 |
-
name: MTEB DBPedia
|
1184 |
-
config: default
|
1185 |
-
split: test
|
1186 |
-
revision: None
|
1187 |
-
metrics:
|
1188 |
-
- type: map_at_1
|
1189 |
-
value: 8.212
|
1190 |
-
- type: map_at_10
|
1191 |
-
value: 17.386
|
1192 |
-
- type: map_at_100
|
1193 |
-
value: 24.234
|
1194 |
-
- type: map_at_1000
|
1195 |
-
value: 25.724999999999998
|
1196 |
-
- type: map_at_3
|
1197 |
-
value: 12.727
|
1198 |
-
- type: map_at_5
|
1199 |
-
value: 14.785
|
1200 |
-
- type: mrr_at_1
|
1201 |
-
value: 59.25
|
1202 |
-
- type: mrr_at_10
|
1203 |
-
value: 68.687
|
1204 |
-
- type: mrr_at_100
|
1205 |
-
value: 69.133
|
1206 |
-
- type: mrr_at_1000
|
1207 |
-
value: 69.14099999999999
|
1208 |
-
- type: mrr_at_3
|
1209 |
-
value: 66.917
|
1210 |
-
- type: mrr_at_5
|
1211 |
-
value: 67.742
|
1212 |
-
- type: ndcg_at_1
|
1213 |
-
value: 48.625
|
1214 |
-
- type: ndcg_at_10
|
1215 |
-
value: 36.675999999999995
|
1216 |
-
- type: ndcg_at_100
|
1217 |
-
value: 41.543
|
1218 |
-
- type: ndcg_at_1000
|
1219 |
-
value: 49.241
|
1220 |
-
- type: ndcg_at_3
|
1221 |
-
value: 41.373
|
1222 |
-
- type: ndcg_at_5
|
1223 |
-
value: 38.707
|
1224 |
-
- type: precision_at_1
|
1225 |
-
value: 59.25
|
1226 |
-
- type: precision_at_10
|
1227 |
-
value: 28.525
|
1228 |
-
- type: precision_at_100
|
1229 |
-
value: 9.027000000000001
|
1230 |
-
- type: precision_at_1000
|
1231 |
-
value: 1.8339999999999999
|
1232 |
-
- type: precision_at_3
|
1233 |
-
value: 44.833
|
1234 |
-
- type: precision_at_5
|
1235 |
-
value: 37.35
|
1236 |
-
- type: recall_at_1
|
1237 |
-
value: 8.212
|
1238 |
-
- type: recall_at_10
|
1239 |
-
value: 23.188
|
1240 |
-
- type: recall_at_100
|
1241 |
-
value: 48.613
|
1242 |
-
- type: recall_at_1000
|
1243 |
-
value: 73.093
|
1244 |
-
- type: recall_at_3
|
1245 |
-
value: 14.419
|
1246 |
-
- type: recall_at_5
|
1247 |
-
value: 17.798
|
1248 |
-
- task:
|
1249 |
-
type: Classification
|
1250 |
-
dataset:
|
1251 |
-
type: mteb/emotion
|
1252 |
-
name: MTEB EmotionClassification
|
1253 |
-
config: default
|
1254 |
-
split: test
|
1255 |
-
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
1256 |
-
metrics:
|
1257 |
-
- type: accuracy
|
1258 |
-
value: 52.725
|
1259 |
-
- type: f1
|
1260 |
-
value: 46.50743309855908
|
1261 |
-
- task:
|
1262 |
-
type: Retrieval
|
1263 |
-
dataset:
|
1264 |
-
type: fever
|
1265 |
-
name: MTEB FEVER
|
1266 |
-
config: default
|
1267 |
-
split: test
|
1268 |
-
revision: None
|
1269 |
-
metrics:
|
1270 |
-
- type: map_at_1
|
1271 |
-
value: 55.086
|
1272 |
-
- type: map_at_10
|
1273 |
-
value: 66.914
|
1274 |
-
- type: map_at_100
|
1275 |
-
value: 67.321
|
1276 |
-
- type: map_at_1000
|
1277 |
-
value: 67.341
|
1278 |
-
- type: map_at_3
|
1279 |
-
value: 64.75800000000001
|
1280 |
-
- type: map_at_5
|
1281 |
-
value: 66.189
|
1282 |
-
- type: mrr_at_1
|
1283 |
-
value: 59.28600000000001
|
1284 |
-
- type: mrr_at_10
|
1285 |
-
value: 71.005
|
1286 |
-
- type: mrr_at_100
|
1287 |
-
value: 71.304
|
1288 |
-
- type: mrr_at_1000
|
1289 |
-
value: 71.313
|
1290 |
-
- type: mrr_at_3
|
1291 |
-
value: 69.037
|
1292 |
-
- type: mrr_at_5
|
1293 |
-
value: 70.35
|
1294 |
-
- type: ndcg_at_1
|
1295 |
-
value: 59.28600000000001
|
1296 |
-
- type: ndcg_at_10
|
1297 |
-
value: 72.695
|
1298 |
-
- type: ndcg_at_100
|
1299 |
-
value: 74.432
|
1300 |
-
- type: ndcg_at_1000
|
1301 |
-
value: 74.868
|
1302 |
-
- type: ndcg_at_3
|
1303 |
-
value: 68.72200000000001
|
1304 |
-
- type: ndcg_at_5
|
1305 |
-
value: 71.081
|
1306 |
-
- type: precision_at_1
|
1307 |
-
value: 59.28600000000001
|
1308 |
-
- type: precision_at_10
|
1309 |
-
value: 9.499
|
1310 |
-
- type: precision_at_100
|
1311 |
-
value: 1.052
|
1312 |
-
- type: precision_at_1000
|
1313 |
-
value: 0.11100000000000002
|
1314 |
-
- type: precision_at_3
|
1315 |
-
value: 27.503
|
1316 |
-
- type: precision_at_5
|
1317 |
-
value: 17.854999999999997
|
1318 |
-
- type: recall_at_1
|
1319 |
-
value: 55.086
|
1320 |
-
- type: recall_at_10
|
1321 |
-
value: 86.453
|
1322 |
-
- type: recall_at_100
|
1323 |
-
value: 94.028
|
1324 |
-
- type: recall_at_1000
|
1325 |
-
value: 97.052
|
1326 |
-
- type: recall_at_3
|
1327 |
-
value: 75.821
|
1328 |
-
- type: recall_at_5
|
1329 |
-
value: 81.6
|
1330 |
-
- task:
|
1331 |
-
type: Retrieval
|
1332 |
-
dataset:
|
1333 |
-
type: fiqa
|
1334 |
-
name: MTEB FiQA2018
|
1335 |
-
config: default
|
1336 |
-
split: test
|
1337 |
-
revision: None
|
1338 |
-
metrics:
|
1339 |
-
- type: map_at_1
|
1340 |
-
value: 22.262999999999998
|
1341 |
-
- type: map_at_10
|
1342 |
-
value: 37.488
|
1343 |
-
- type: map_at_100
|
1344 |
-
value: 39.498
|
1345 |
-
- type: map_at_1000
|
1346 |
-
value: 39.687
|
1347 |
-
- type: map_at_3
|
1348 |
-
value: 32.529
|
1349 |
-
- type: map_at_5
|
1350 |
-
value: 35.455
|
1351 |
-
- type: mrr_at_1
|
1352 |
-
value: 44.907000000000004
|
1353 |
-
- type: mrr_at_10
|
1354 |
-
value: 53.239000000000004
|
1355 |
-
- type: mrr_at_100
|
1356 |
-
value: 54.086
|
1357 |
-
- type: mrr_at_1000
|
1358 |
-
value: 54.122
|
1359 |
-
- type: mrr_at_3
|
1360 |
-
value: 51.235
|
1361 |
-
- type: mrr_at_5
|
1362 |
-
value: 52.415
|
1363 |
-
- type: ndcg_at_1
|
1364 |
-
value: 44.907000000000004
|
1365 |
-
- type: ndcg_at_10
|
1366 |
-
value: 45.446
|
1367 |
-
- type: ndcg_at_100
|
1368 |
-
value: 52.429
|
1369 |
-
- type: ndcg_at_1000
|
1370 |
-
value: 55.169000000000004
|
1371 |
-
- type: ndcg_at_3
|
1372 |
-
value: 41.882000000000005
|
1373 |
-
- type: ndcg_at_5
|
1374 |
-
value: 43.178
|
1375 |
-
- type: precision_at_1
|
1376 |
-
value: 44.907000000000004
|
1377 |
-
- type: precision_at_10
|
1378 |
-
value: 12.931999999999999
|
1379 |
-
- type: precision_at_100
|
1380 |
-
value: 2.025
|
1381 |
-
- type: precision_at_1000
|
1382 |
-
value: 0.248
|
1383 |
-
- type: precision_at_3
|
1384 |
-
value: 28.652
|
1385 |
-
- type: precision_at_5
|
1386 |
-
value: 21.204
|
1387 |
-
- type: recall_at_1
|
1388 |
-
value: 22.262999999999998
|
1389 |
-
- type: recall_at_10
|
1390 |
-
value: 52.447
|
1391 |
-
- type: recall_at_100
|
1392 |
-
value: 78.045
|
1393 |
-
- type: recall_at_1000
|
1394 |
-
value: 94.419
|
1395 |
-
- type: recall_at_3
|
1396 |
-
value: 38.064
|
1397 |
-
- type: recall_at_5
|
1398 |
-
value: 44.769
|
1399 |
-
- task:
|
1400 |
-
type: Retrieval
|
1401 |
-
dataset:
|
1402 |
-
type: hotpotqa
|
1403 |
-
name: MTEB HotpotQA
|
1404 |
-
config: default
|
1405 |
-
split: test
|
1406 |
-
revision: None
|
1407 |
-
metrics:
|
1408 |
-
- type: map_at_1
|
1409 |
-
value: 32.519
|
1410 |
-
- type: map_at_10
|
1411 |
-
value: 45.831
|
1412 |
-
- type: map_at_100
|
1413 |
-
value: 46.815
|
1414 |
-
- type: map_at_1000
|
1415 |
-
value: 46.899
|
1416 |
-
- type: map_at_3
|
1417 |
-
value: 42.836
|
1418 |
-
- type: map_at_5
|
1419 |
-
value: 44.65
|
1420 |
-
- type: mrr_at_1
|
1421 |
-
value: 65.037
|
1422 |
-
- type: mrr_at_10
|
1423 |
-
value: 72.16
|
1424 |
-
- type: mrr_at_100
|
1425 |
-
value: 72.51100000000001
|
1426 |
-
- type: mrr_at_1000
|
1427 |
-
value: 72.53
|
1428 |
-
- type: mrr_at_3
|
1429 |
-
value: 70.682
|
1430 |
-
- type: mrr_at_5
|
1431 |
-
value: 71.54599999999999
|
1432 |
-
- type: ndcg_at_1
|
1433 |
-
value: 65.037
|
1434 |
-
- type: ndcg_at_10
|
1435 |
-
value: 55.17999999999999
|
1436 |
-
- type: ndcg_at_100
|
1437 |
-
value: 58.888
|
1438 |
-
- type: ndcg_at_1000
|
1439 |
-
value: 60.648
|
1440 |
-
- type: ndcg_at_3
|
1441 |
-
value: 50.501
|
1442 |
-
- type: ndcg_at_5
|
1443 |
-
value: 52.977
|
1444 |
-
- type: precision_at_1
|
1445 |
-
value: 65.037
|
1446 |
-
- type: precision_at_10
|
1447 |
-
value: 11.530999999999999
|
1448 |
-
- type: precision_at_100
|
1449 |
-
value: 1.4460000000000002
|
1450 |
-
- type: precision_at_1000
|
1451 |
-
value: 0.168
|
1452 |
-
- type: precision_at_3
|
1453 |
-
value: 31.483
|
1454 |
-
- type: precision_at_5
|
1455 |
-
value: 20.845
|
1456 |
-
- type: recall_at_1
|
1457 |
-
value: 32.519
|
1458 |
-
- type: recall_at_10
|
1459 |
-
value: 57.657000000000004
|
1460 |
-
- type: recall_at_100
|
1461 |
-
value: 72.30199999999999
|
1462 |
-
- type: recall_at_1000
|
1463 |
-
value: 84.024
|
1464 |
-
- type: recall_at_3
|
1465 |
-
value: 47.225
|
1466 |
-
- type: recall_at_5
|
1467 |
-
value: 52.113
|
1468 |
-
- task:
|
1469 |
-
type: Classification
|
1470 |
-
dataset:
|
1471 |
-
type: mteb/imdb
|
1472 |
-
name: MTEB ImdbClassification
|
1473 |
-
config: default
|
1474 |
-
split: test
|
1475 |
-
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1476 |
-
metrics:
|
1477 |
-
- type: accuracy
|
1478 |
-
value: 88.3168
|
1479 |
-
- type: ap
|
1480 |
-
value: 83.80165516037135
|
1481 |
-
- type: f1
|
1482 |
-
value: 88.29942471066407
|
1483 |
-
- task:
|
1484 |
-
type: Retrieval
|
1485 |
-
dataset:
|
1486 |
-
type: msmarco
|
1487 |
-
name: MTEB MSMARCO
|
1488 |
-
config: default
|
1489 |
-
split: dev
|
1490 |
-
revision: None
|
1491 |
-
metrics:
|
1492 |
-
- type: map_at_1
|
1493 |
-
value: 20.724999999999998
|
1494 |
-
- type: map_at_10
|
1495 |
-
value: 32.736
|
1496 |
-
- type: map_at_100
|
1497 |
-
value: 33.938
|
1498 |
-
- type: map_at_1000
|
1499 |
-
value: 33.991
|
1500 |
-
- type: map_at_3
|
1501 |
-
value: 28.788000000000004
|
1502 |
-
- type: map_at_5
|
1503 |
-
value: 31.016
|
1504 |
-
- type: mrr_at_1
|
1505 |
-
value: 21.361
|
1506 |
-
- type: mrr_at_10
|
1507 |
-
value: 33.323
|
1508 |
-
- type: mrr_at_100
|
1509 |
-
value: 34.471000000000004
|
1510 |
-
- type: mrr_at_1000
|
1511 |
-
value: 34.518
|
1512 |
-
- type: mrr_at_3
|
1513 |
-
value: 29.453000000000003
|
1514 |
-
- type: mrr_at_5
|
1515 |
-
value: 31.629
|
1516 |
-
- type: ndcg_at_1
|
1517 |
-
value: 21.361
|
1518 |
-
- type: ndcg_at_10
|
1519 |
-
value: 39.649
|
1520 |
-
- type: ndcg_at_100
|
1521 |
-
value: 45.481
|
1522 |
-
- type: ndcg_at_1000
|
1523 |
-
value: 46.775
|
1524 |
-
- type: ndcg_at_3
|
1525 |
-
value: 31.594
|
1526 |
-
- type: ndcg_at_5
|
1527 |
-
value: 35.543
|
1528 |
-
- type: precision_at_1
|
1529 |
-
value: 21.361
|
1530 |
-
- type: precision_at_10
|
1531 |
-
value: 6.3740000000000006
|
1532 |
-
- type: precision_at_100
|
1533 |
-
value: 0.931
|
1534 |
-
- type: precision_at_1000
|
1535 |
-
value: 0.104
|
1536 |
-
- type: precision_at_3
|
1537 |
-
value: 13.514999999999999
|
1538 |
-
- type: precision_at_5
|
1539 |
-
value: 10.100000000000001
|
1540 |
-
- type: recall_at_1
|
1541 |
-
value: 20.724999999999998
|
1542 |
-
- type: recall_at_10
|
1543 |
-
value: 61.034
|
1544 |
-
- type: recall_at_100
|
1545 |
-
value: 88.062
|
1546 |
-
- type: recall_at_1000
|
1547 |
-
value: 97.86399999999999
|
1548 |
-
- type: recall_at_3
|
1549 |
-
value: 39.072
|
1550 |
-
- type: recall_at_5
|
1551 |
-
value: 48.53
|
1552 |
-
- task:
|
1553 |
-
type: Classification
|
1554 |
-
dataset:
|
1555 |
-
type: mteb/mtop_domain
|
1556 |
-
name: MTEB MTOPDomainClassification (en)
|
1557 |
-
config: en
|
1558 |
-
split: test
|
1559 |
-
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1560 |
-
metrics:
|
1561 |
-
- type: accuracy
|
1562 |
-
value: 93.8919288645691
|
1563 |
-
- type: f1
|
1564 |
-
value: 93.57059586398059
|
1565 |
-
- task:
|
1566 |
-
type: Classification
|
1567 |
-
dataset:
|
1568 |
-
type: mteb/mtop_intent
|
1569 |
-
name: MTEB MTOPIntentClassification (en)
|
1570 |
-
config: en
|
1571 |
-
split: test
|
1572 |
-
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1573 |
-
metrics:
|
1574 |
-
- type: accuracy
|
1575 |
-
value: 67.97993616051072
|
1576 |
-
- type: f1
|
1577 |
-
value: 48.244319183606535
|
1578 |
-
- task:
|
1579 |
-
type: Classification
|
1580 |
-
dataset:
|
1581 |
-
type: mteb/amazon_massive_intent
|
1582 |
-
name: MTEB MassiveIntentClassification (en)
|
1583 |
-
config: en
|
1584 |
-
split: test
|
1585 |
-
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1586 |
-
metrics:
|
1587 |
-
- type: accuracy
|
1588 |
-
value: 68.90047074646941
|
1589 |
-
- type: f1
|
1590 |
-
value: 66.48999056063725
|
1591 |
-
- task:
|
1592 |
-
type: Classification
|
1593 |
-
dataset:
|
1594 |
-
type: mteb/amazon_massive_scenario
|
1595 |
-
name: MTEB MassiveScenarioClassification (en)
|
1596 |
-
config: en
|
1597 |
-
split: test
|
1598 |
-
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1599 |
-
metrics:
|
1600 |
-
- type: accuracy
|
1601 |
-
value: 73.34566240753195
|
1602 |
-
- type: f1
|
1603 |
-
value: 73.54164154290658
|
1604 |
-
- task:
|
1605 |
-
type: Clustering
|
1606 |
-
dataset:
|
1607 |
-
type: mteb/medrxiv-clustering-p2p
|
1608 |
-
name: MTEB MedrxivClusteringP2P
|
1609 |
-
config: default
|
1610 |
-
split: test
|
1611 |
-
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1612 |
-
metrics:
|
1613 |
-
- type: v_measure
|
1614 |
-
value: 34.21866934757011
|
1615 |
-
- task:
|
1616 |
-
type: Clustering
|
1617 |
-
dataset:
|
1618 |
-
type: mteb/medrxiv-clustering-s2s
|
1619 |
-
name: MTEB MedrxivClusteringS2S
|
1620 |
-
config: default
|
1621 |
-
split: test
|
1622 |
-
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1623 |
-
metrics:
|
1624 |
-
- type: v_measure
|
1625 |
-
value: 32.000936217235534
|
1626 |
-
- task:
|
1627 |
-
type: Reranking
|
1628 |
-
dataset:
|
1629 |
-
type: mteb/mind_small
|
1630 |
-
name: MTEB MindSmallReranking
|
1631 |
-
config: default
|
1632 |
-
split: test
|
1633 |
-
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1634 |
-
metrics:
|
1635 |
-
- type: map
|
1636 |
-
value: 31.68189362520352
|
1637 |
-
- type: mrr
|
1638 |
-
value: 32.69603637784303
|
1639 |
-
- task:
|
1640 |
-
type: Retrieval
|
1641 |
-
dataset:
|
1642 |
-
type: nfcorpus
|
1643 |
-
name: MTEB NFCorpus
|
1644 |
-
config: default
|
1645 |
-
split: test
|
1646 |
-
revision: None
|
1647 |
-
metrics:
|
1648 |
-
- type: map_at_1
|
1649 |
-
value: 6.078
|
1650 |
-
- type: map_at_10
|
1651 |
-
value: 12.671
|
1652 |
-
- type: map_at_100
|
1653 |
-
value: 16.291
|
1654 |
-
- type: map_at_1000
|
1655 |
-
value: 17.855999999999998
|
1656 |
-
- type: map_at_3
|
1657 |
-
value: 9.610000000000001
|
1658 |
-
- type: map_at_5
|
1659 |
-
value: 11.152
|
1660 |
-
- type: mrr_at_1
|
1661 |
-
value: 43.963
|
1662 |
-
- type: mrr_at_10
|
1663 |
-
value: 53.173
|
1664 |
-
- type: mrr_at_100
|
1665 |
-
value: 53.718999999999994
|
1666 |
-
- type: mrr_at_1000
|
1667 |
-
value: 53.756
|
1668 |
-
- type: mrr_at_3
|
1669 |
-
value: 50.980000000000004
|
1670 |
-
- type: mrr_at_5
|
1671 |
-
value: 52.42
|
1672 |
-
- type: ndcg_at_1
|
1673 |
-
value: 42.415000000000006
|
1674 |
-
- type: ndcg_at_10
|
1675 |
-
value: 34.086
|
1676 |
-
- type: ndcg_at_100
|
1677 |
-
value: 32.545
|
1678 |
-
- type: ndcg_at_1000
|
1679 |
-
value: 41.144999999999996
|
1680 |
-
- type: ndcg_at_3
|
1681 |
-
value: 39.434999999999995
|
1682 |
-
- type: ndcg_at_5
|
1683 |
-
value: 37.888
|
1684 |
-
- type: precision_at_1
|
1685 |
-
value: 43.653
|
1686 |
-
- type: precision_at_10
|
1687 |
-
value: 25.014999999999997
|
1688 |
-
- type: precision_at_100
|
1689 |
-
value: 8.594
|
1690 |
-
- type: precision_at_1000
|
1691 |
-
value: 2.169
|
1692 |
-
- type: precision_at_3
|
1693 |
-
value: 37.049
|
1694 |
-
- type: precision_at_5
|
1695 |
-
value: 33.065
|
1696 |
-
- type: recall_at_1
|
1697 |
-
value: 6.078
|
1698 |
-
- type: recall_at_10
|
1699 |
-
value: 16.17
|
1700 |
-
- type: recall_at_100
|
1701 |
-
value: 34.512
|
1702 |
-
- type: recall_at_1000
|
1703 |
-
value: 65.447
|
1704 |
-
- type: recall_at_3
|
1705 |
-
value: 10.706
|
1706 |
-
- type: recall_at_5
|
1707 |
-
value: 13.158
|
1708 |
-
- task:
|
1709 |
-
type: Retrieval
|
1710 |
-
dataset:
|
1711 |
-
type: nq
|
1712 |
-
name: MTEB NQ
|
1713 |
-
config: default
|
1714 |
-
split: test
|
1715 |
-
revision: None
|
1716 |
-
metrics:
|
1717 |
-
- type: map_at_1
|
1718 |
-
value: 27.378000000000004
|
1719 |
-
- type: map_at_10
|
1720 |
-
value: 42.178
|
1721 |
-
- type: map_at_100
|
1722 |
-
value: 43.32
|
1723 |
-
- type: map_at_1000
|
1724 |
-
value: 43.358000000000004
|
1725 |
-
- type: map_at_3
|
1726 |
-
value: 37.474000000000004
|
1727 |
-
- type: map_at_5
|
1728 |
-
value: 40.333000000000006
|
1729 |
-
- type: mrr_at_1
|
1730 |
-
value: 30.823
|
1731 |
-
- type: mrr_at_10
|
1732 |
-
value: 44.626
|
1733 |
-
- type: mrr_at_100
|
1734 |
-
value: 45.494
|
1735 |
-
- type: mrr_at_1000
|
1736 |
-
value: 45.519
|
1737 |
-
- type: mrr_at_3
|
1738 |
-
value: 40.585
|
1739 |
-
- type: mrr_at_5
|
1740 |
-
value: 43.146
|
1741 |
-
- type: ndcg_at_1
|
1742 |
-
value: 30.794
|
1743 |
-
- type: ndcg_at_10
|
1744 |
-
value: 50.099000000000004
|
1745 |
-
- type: ndcg_at_100
|
1746 |
-
value: 54.900999999999996
|
1747 |
-
- type: ndcg_at_1000
|
1748 |
-
value: 55.69499999999999
|
1749 |
-
- type: ndcg_at_3
|
1750 |
-
value: 41.238
|
1751 |
-
- type: ndcg_at_5
|
1752 |
-
value: 46.081
|
1753 |
-
- type: precision_at_1
|
1754 |
-
value: 30.794
|
1755 |
-
- type: precision_at_10
|
1756 |
-
value: 8.549
|
1757 |
-
- type: precision_at_100
|
1758 |
-
value: 1.124
|
1759 |
-
- type: precision_at_1000
|
1760 |
-
value: 0.12
|
1761 |
-
- type: precision_at_3
|
1762 |
-
value: 18.926000000000002
|
1763 |
-
- type: precision_at_5
|
1764 |
-
value: 14.16
|
1765 |
-
- type: recall_at_1
|
1766 |
-
value: 27.378000000000004
|
1767 |
-
- type: recall_at_10
|
1768 |
-
value: 71.842
|
1769 |
-
- type: recall_at_100
|
1770 |
-
value: 92.565
|
1771 |
-
- type: recall_at_1000
|
1772 |
-
value: 98.402
|
1773 |
-
- type: recall_at_3
|
1774 |
-
value: 49.053999999999995
|
1775 |
-
- type: recall_at_5
|
1776 |
-
value: 60.207
|
1777 |
-
- task:
|
1778 |
-
type: Retrieval
|
1779 |
-
dataset:
|
1780 |
-
type: quora
|
1781 |
-
name: MTEB QuoraRetrieval
|
1782 |
-
config: default
|
1783 |
-
split: test
|
1784 |
-
revision: None
|
1785 |
-
metrics:
|
1786 |
-
- type: map_at_1
|
1787 |
-
value: 70.557
|
1788 |
-
- type: map_at_10
|
1789 |
-
value: 84.729
|
1790 |
-
- type: map_at_100
|
1791 |
-
value: 85.369
|
1792 |
-
- type: map_at_1000
|
1793 |
-
value: 85.382
|
1794 |
-
- type: map_at_3
|
1795 |
-
value: 81.72
|
1796 |
-
- type: map_at_5
|
1797 |
-
value: 83.613
|
1798 |
-
- type: mrr_at_1
|
1799 |
-
value: 81.3
|
1800 |
-
- type: mrr_at_10
|
1801 |
-
value: 87.488
|
1802 |
-
- type: mrr_at_100
|
1803 |
-
value: 87.588
|
1804 |
-
- type: mrr_at_1000
|
1805 |
-
value: 87.589
|
1806 |
-
- type: mrr_at_3
|
1807 |
-
value: 86.53
|
1808 |
-
- type: mrr_at_5
|
1809 |
-
value: 87.18599999999999
|
1810 |
-
- type: ndcg_at_1
|
1811 |
-
value: 81.28999999999999
|
1812 |
-
- type: ndcg_at_10
|
1813 |
-
value: 88.442
|
1814 |
-
- type: ndcg_at_100
|
1815 |
-
value: 89.637
|
1816 |
-
- type: ndcg_at_1000
|
1817 |
-
value: 89.70700000000001
|
1818 |
-
- type: ndcg_at_3
|
1819 |
-
value: 85.55199999999999
|
1820 |
-
- type: ndcg_at_5
|
1821 |
-
value: 87.154
|
1822 |
-
- type: precision_at_1
|
1823 |
-
value: 81.28999999999999
|
1824 |
-
- type: precision_at_10
|
1825 |
-
value: 13.489999999999998
|
1826 |
-
- type: precision_at_100
|
1827 |
-
value: 1.54
|
1828 |
-
- type: precision_at_1000
|
1829 |
-
value: 0.157
|
1830 |
-
- type: precision_at_3
|
1831 |
-
value: 37.553
|
1832 |
-
- type: precision_at_5
|
1833 |
-
value: 24.708
|
1834 |
-
- type: recall_at_1
|
1835 |
-
value: 70.557
|
1836 |
-
- type: recall_at_10
|
1837 |
-
value: 95.645
|
1838 |
-
- type: recall_at_100
|
1839 |
-
value: 99.693
|
1840 |
-
- type: recall_at_1000
|
1841 |
-
value: 99.995
|
1842 |
-
- type: recall_at_3
|
1843 |
-
value: 87.359
|
1844 |
-
- type: recall_at_5
|
1845 |
-
value: 91.89699999999999
|
1846 |
-
- task:
|
1847 |
-
type: Clustering
|
1848 |
-
dataset:
|
1849 |
-
type: mteb/reddit-clustering
|
1850 |
-
name: MTEB RedditClustering
|
1851 |
-
config: default
|
1852 |
-
split: test
|
1853 |
-
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1854 |
-
metrics:
|
1855 |
-
- type: v_measure
|
1856 |
-
value: 63.65060114776209
|
1857 |
-
- task:
|
1858 |
-
type: Clustering
|
1859 |
-
dataset:
|
1860 |
-
type: mteb/reddit-clustering-p2p
|
1861 |
-
name: MTEB RedditClusteringP2P
|
1862 |
-
config: default
|
1863 |
-
split: test
|
1864 |
-
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1865 |
-
metrics:
|
1866 |
-
- type: v_measure
|
1867 |
-
value: 64.63271250680617
|
1868 |
-
- task:
|
1869 |
-
type: Retrieval
|
1870 |
-
dataset:
|
1871 |
-
type: scidocs
|
1872 |
-
name: MTEB SCIDOCS
|
1873 |
-
config: default
|
1874 |
-
split: test
|
1875 |
-
revision: None
|
1876 |
-
metrics:
|
1877 |
-
- type: map_at_1
|
1878 |
-
value: 4.263
|
1879 |
-
- type: map_at_10
|
1880 |
-
value: 10.801
|
1881 |
-
- type: map_at_100
|
1882 |
-
value: 12.888
|
1883 |
-
- type: map_at_1000
|
1884 |
-
value: 13.224
|
1885 |
-
- type: map_at_3
|
1886 |
-
value: 7.362
|
1887 |
-
- type: map_at_5
|
1888 |
-
value: 9.149000000000001
|
1889 |
-
- type: mrr_at_1
|
1890 |
-
value: 21
|
1891 |
-
- type: mrr_at_10
|
1892 |
-
value: 31.416
|
1893 |
-
- type: mrr_at_100
|
1894 |
-
value: 32.513
|
1895 |
-
- type: mrr_at_1000
|
1896 |
-
value: 32.58
|
1897 |
-
- type: mrr_at_3
|
1898 |
-
value: 28.116999999999997
|
1899 |
-
- type: mrr_at_5
|
1900 |
-
value: 29.976999999999997
|
1901 |
-
- type: ndcg_at_1
|
1902 |
-
value: 21
|
1903 |
-
- type: ndcg_at_10
|
1904 |
-
value: 18.551000000000002
|
1905 |
-
- type: ndcg_at_100
|
1906 |
-
value: 26.657999999999998
|
1907 |
-
- type: ndcg_at_1000
|
1908 |
-
value: 32.485
|
1909 |
-
- type: ndcg_at_3
|
1910 |
-
value: 16.834
|
1911 |
-
- type: ndcg_at_5
|
1912 |
-
value: 15.204999999999998
|
1913 |
-
- type: precision_at_1
|
1914 |
-
value: 21
|
1915 |
-
- type: precision_at_10
|
1916 |
-
value: 9.84
|
1917 |
-
- type: precision_at_100
|
1918 |
-
value: 2.16
|
1919 |
-
- type: precision_at_1000
|
1920 |
-
value: 0.35500000000000004
|
1921 |
-
- type: precision_at_3
|
1922 |
-
value: 15.667
|
1923 |
-
- type: precision_at_5
|
1924 |
-
value: 13.62
|
1925 |
-
- type: recall_at_1
|
1926 |
-
value: 4.263
|
1927 |
-
- type: recall_at_10
|
1928 |
-
value: 19.922
|
1929 |
-
- type: recall_at_100
|
1930 |
-
value: 43.808
|
1931 |
-
- type: recall_at_1000
|
1932 |
-
value: 72.14500000000001
|
1933 |
-
- type: recall_at_3
|
1934 |
-
value: 9.493
|
1935 |
-
- type: recall_at_5
|
1936 |
-
value: 13.767999999999999
|
1937 |
-
- task:
|
1938 |
-
type: STS
|
1939 |
-
dataset:
|
1940 |
-
type: mteb/sickr-sts
|
1941 |
-
name: MTEB SICK-R
|
1942 |
-
config: default
|
1943 |
-
split: test
|
1944 |
-
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1945 |
-
metrics:
|
1946 |
-
- type: cos_sim_spearman
|
1947 |
-
value: 81.27446313317233
|
1948 |
-
- task:
|
1949 |
-
type: STS
|
1950 |
-
dataset:
|
1951 |
-
type: mteb/sts12-sts
|
1952 |
-
name: MTEB STS12
|
1953 |
-
config: default
|
1954 |
-
split: test
|
1955 |
-
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1956 |
-
metrics:
|
1957 |
-
- type: cos_sim_spearman
|
1958 |
-
value: 76.27963301217527
|
1959 |
-
- task:
|
1960 |
-
type: STS
|
1961 |
-
dataset:
|
1962 |
-
type: mteb/sts13-sts
|
1963 |
-
name: MTEB STS13
|
1964 |
-
config: default
|
1965 |
-
split: test
|
1966 |
-
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1967 |
-
metrics:
|
1968 |
-
- type: cos_sim_spearman
|
1969 |
-
value: 88.18495048450949
|
1970 |
-
- task:
|
1971 |
-
type: STS
|
1972 |
-
dataset:
|
1973 |
-
type: mteb/sts14-sts
|
1974 |
-
name: MTEB STS14
|
1975 |
-
config: default
|
1976 |
-
split: test
|
1977 |
-
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
1978 |
-
metrics:
|
1979 |
-
- type: cos_sim_spearman
|
1980 |
-
value: 81.91982338692046
|
1981 |
-
- task:
|
1982 |
-
type: STS
|
1983 |
-
dataset:
|
1984 |
-
type: mteb/sts15-sts
|
1985 |
-
name: MTEB STS15
|
1986 |
-
config: default
|
1987 |
-
split: test
|
1988 |
-
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
1989 |
-
metrics:
|
1990 |
-
- type: cos_sim_spearman
|
1991 |
-
value: 89.00896818385291
|
1992 |
-
- task:
|
1993 |
-
type: STS
|
1994 |
-
dataset:
|
1995 |
-
type: mteb/sts16-sts
|
1996 |
-
name: MTEB STS16
|
1997 |
-
config: default
|
1998 |
-
split: test
|
1999 |
-
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2000 |
-
metrics:
|
2001 |
-
- type: cos_sim_spearman
|
2002 |
-
value: 85.48814644586132
|
2003 |
-
- task:
|
2004 |
-
type: STS
|
2005 |
-
dataset:
|
2006 |
-
type: mteb/sts17-crosslingual-sts
|
2007 |
-
name: MTEB STS17 (en-en)
|
2008 |
-
config: en-en
|
2009 |
-
split: test
|
2010 |
-
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2011 |
-
metrics:
|
2012 |
-
- type: cos_sim_spearman
|
2013 |
-
value: 90.30116926966582
|
2014 |
-
- task:
|
2015 |
-
type: STS
|
2016 |
-
dataset:
|
2017 |
-
type: mteb/sts22-crosslingual-sts
|
2018 |
-
name: MTEB STS22 (en)
|
2019 |
-
config: en
|
2020 |
-
split: test
|
2021 |
-
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2022 |
-
metrics:
|
2023 |
-
- type: cos_sim_spearman
|
2024 |
-
value: 67.74132963032342
|
2025 |
-
- task:
|
2026 |
-
type: STS
|
2027 |
-
dataset:
|
2028 |
-
type: mteb/stsbenchmark-sts
|
2029 |
-
name: MTEB STSBenchmark
|
2030 |
-
config: default
|
2031 |
-
split: test
|
2032 |
-
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2033 |
-
metrics:
|
2034 |
-
- type: cos_sim_spearman
|
2035 |
-
value: 86.87741355780479
|
2036 |
-
- task:
|
2037 |
-
type: Reranking
|
2038 |
-
dataset:
|
2039 |
-
type: mteb/scidocs-reranking
|
2040 |
-
name: MTEB SciDocsRR
|
2041 |
-
config: default
|
2042 |
-
split: test
|
2043 |
-
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2044 |
-
metrics:
|
2045 |
-
- type: map
|
2046 |
-
value: 82.0019012295875
|
2047 |
-
- type: mrr
|
2048 |
-
value: 94.70267024188593
|
2049 |
-
- task:
|
2050 |
-
type: Retrieval
|
2051 |
-
dataset:
|
2052 |
-
type: scifact
|
2053 |
-
name: MTEB SciFact
|
2054 |
-
config: default
|
2055 |
-
split: test
|
2056 |
-
revision: None
|
2057 |
-
metrics:
|
2058 |
-
- type: map_at_1
|
2059 |
-
value: 50.05
|
2060 |
-
- type: map_at_10
|
2061 |
-
value: 59.36
|
2062 |
-
- type: map_at_100
|
2063 |
-
value: 59.967999999999996
|
2064 |
-
- type: map_at_1000
|
2065 |
-
value: 60.023
|
2066 |
-
- type: map_at_3
|
2067 |
-
value: 56.515
|
2068 |
-
- type: map_at_5
|
2069 |
-
value: 58.272999999999996
|
2070 |
-
- type: mrr_at_1
|
2071 |
-
value: 53
|
2072 |
-
- type: mrr_at_10
|
2073 |
-
value: 61.102000000000004
|
2074 |
-
- type: mrr_at_100
|
2075 |
-
value: 61.476
|
2076 |
-
- type: mrr_at_1000
|
2077 |
-
value: 61.523
|
2078 |
-
- type: mrr_at_3
|
2079 |
-
value: 58.778
|
2080 |
-
- type: mrr_at_5
|
2081 |
-
value: 60.128
|
2082 |
-
- type: ndcg_at_1
|
2083 |
-
value: 53
|
2084 |
-
- type: ndcg_at_10
|
2085 |
-
value: 64.43100000000001
|
2086 |
-
- type: ndcg_at_100
|
2087 |
-
value: 66.73599999999999
|
2088 |
-
- type: ndcg_at_1000
|
2089 |
-
value: 68.027
|
2090 |
-
- type: ndcg_at_3
|
2091 |
-
value: 59.279
|
2092 |
-
- type: ndcg_at_5
|
2093 |
-
value: 61.888
|
2094 |
-
- type: precision_at_1
|
2095 |
-
value: 53
|
2096 |
-
- type: precision_at_10
|
2097 |
-
value: 8.767
|
2098 |
-
- type: precision_at_100
|
2099 |
-
value: 1.01
|
2100 |
-
- type: precision_at_1000
|
2101 |
-
value: 0.11100000000000002
|
2102 |
-
- type: precision_at_3
|
2103 |
-
value: 23.444000000000003
|
2104 |
-
- type: precision_at_5
|
2105 |
-
value: 15.667
|
2106 |
-
- type: recall_at_1
|
2107 |
-
value: 50.05
|
2108 |
-
- type: recall_at_10
|
2109 |
-
value: 78.511
|
2110 |
-
- type: recall_at_100
|
2111 |
-
value: 88.5
|
2112 |
-
- type: recall_at_1000
|
2113 |
-
value: 98.333
|
2114 |
-
- type: recall_at_3
|
2115 |
-
value: 64.117
|
2116 |
-
- type: recall_at_5
|
2117 |
-
value: 70.867
|
2118 |
-
- task:
|
2119 |
-
type: PairClassification
|
2120 |
-
dataset:
|
2121 |
-
type: mteb/sprintduplicatequestions-pairclassification
|
2122 |
-
name: MTEB SprintDuplicateQuestions
|
2123 |
-
config: default
|
2124 |
-
split: test
|
2125 |
-
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2126 |
-
metrics:
|
2127 |
-
- type: cos_sim_accuracy
|
2128 |
-
value: 99.72178217821782
|
2129 |
-
- type: cos_sim_ap
|
2130 |
-
value: 93.0728601593541
|
2131 |
-
- type: cos_sim_f1
|
2132 |
-
value: 85.6727976766699
|
2133 |
-
- type: cos_sim_precision
|
2134 |
-
value: 83.02063789868667
|
2135 |
-
- type: cos_sim_recall
|
2136 |
-
value: 88.5
|
2137 |
-
- type: dot_accuracy
|
2138 |
-
value: 99.72178217821782
|
2139 |
-
- type: dot_ap
|
2140 |
-
value: 93.07287396168348
|
2141 |
-
- type: dot_f1
|
2142 |
-
value: 85.6727976766699
|
2143 |
-
- type: dot_precision
|
2144 |
-
value: 83.02063789868667
|
2145 |
-
- type: dot_recall
|
2146 |
-
value: 88.5
|
2147 |
-
- type: euclidean_accuracy
|
2148 |
-
value: 99.72178217821782
|
2149 |
-
- type: euclidean_ap
|
2150 |
-
value: 93.07285657982895
|
2151 |
-
- type: euclidean_f1
|
2152 |
-
value: 85.6727976766699
|
2153 |
-
- type: euclidean_precision
|
2154 |
-
value: 83.02063789868667
|
2155 |
-
- type: euclidean_recall
|
2156 |
-
value: 88.5
|
2157 |
-
- type: manhattan_accuracy
|
2158 |
-
value: 99.72475247524753
|
2159 |
-
- type: manhattan_ap
|
2160 |
-
value: 93.02792973059809
|
2161 |
-
- type: manhattan_f1
|
2162 |
-
value: 85.7727737973388
|
2163 |
-
- type: manhattan_precision
|
2164 |
-
value: 87.84067085953879
|
2165 |
-
- type: manhattan_recall
|
2166 |
-
value: 83.8
|
2167 |
-
- type: max_accuracy
|
2168 |
-
value: 99.72475247524753
|
2169 |
-
- type: max_ap
|
2170 |
-
value: 93.07287396168348
|
2171 |
-
- type: max_f1
|
2172 |
-
value: 85.7727737973388
|
2173 |
-
- task:
|
2174 |
-
type: Clustering
|
2175 |
-
dataset:
|
2176 |
-
type: mteb/stackexchange-clustering
|
2177 |
-
name: MTEB StackExchangeClustering
|
2178 |
-
config: default
|
2179 |
-
split: test
|
2180 |
-
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2181 |
-
metrics:
|
2182 |
-
- type: v_measure
|
2183 |
-
value: 68.77583615550819
|
2184 |
-
- task:
|
2185 |
-
type: Clustering
|
2186 |
-
dataset:
|
2187 |
-
type: mteb/stackexchange-clustering-p2p
|
2188 |
-
name: MTEB StackExchangeClusteringP2P
|
2189 |
-
config: default
|
2190 |
-
split: test
|
2191 |
-
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2192 |
-
metrics:
|
2193 |
-
- type: v_measure
|
2194 |
-
value: 36.151636938606956
|
2195 |
-
- task:
|
2196 |
-
type: Reranking
|
2197 |
-
dataset:
|
2198 |
-
type: mteb/stackoverflowdupquestions-reranking
|
2199 |
-
name: MTEB StackOverflowDupQuestions
|
2200 |
-
config: default
|
2201 |
-
split: test
|
2202 |
-
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2203 |
-
metrics:
|
2204 |
-
- type: map
|
2205 |
-
value: 52.16607939471187
|
2206 |
-
- type: mrr
|
2207 |
-
value: 52.95172046091163
|
2208 |
-
- task:
|
2209 |
-
type: Summarization
|
2210 |
-
dataset:
|
2211 |
-
type: mteb/summeval
|
2212 |
-
name: MTEB SummEval
|
2213 |
-
config: default
|
2214 |
-
split: test
|
2215 |
-
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2216 |
-
metrics:
|
2217 |
-
- type: cos_sim_pearson
|
2218 |
-
value: 31.314646669495666
|
2219 |
-
- type: cos_sim_spearman
|
2220 |
-
value: 31.83562491439455
|
2221 |
-
- type: dot_pearson
|
2222 |
-
value: 31.314590842874157
|
2223 |
-
- type: dot_spearman
|
2224 |
-
value: 31.83363065810437
|
2225 |
-
- task:
|
2226 |
-
type: Retrieval
|
2227 |
-
dataset:
|
2228 |
-
type: trec-covid
|
2229 |
-
name: MTEB TRECCOVID
|
2230 |
-
config: default
|
2231 |
-
split: test
|
2232 |
-
revision: None
|
2233 |
-
metrics:
|
2234 |
-
- type: map_at_1
|
2235 |
-
value: 0.198
|
2236 |
-
- type: map_at_10
|
2237 |
-
value: 1.3010000000000002
|
2238 |
-
- type: map_at_100
|
2239 |
-
value: 7.2139999999999995
|
2240 |
-
- type: map_at_1000
|
2241 |
-
value: 20.179
|
2242 |
-
- type: map_at_3
|
2243 |
-
value: 0.528
|
2244 |
-
- type: map_at_5
|
2245 |
-
value: 0.8019999999999999
|
2246 |
-
- type: mrr_at_1
|
2247 |
-
value: 72
|
2248 |
-
- type: mrr_at_10
|
2249 |
-
value: 83.39999999999999
|
2250 |
-
- type: mrr_at_100
|
2251 |
-
value: 83.39999999999999
|
2252 |
-
- type: mrr_at_1000
|
2253 |
-
value: 83.39999999999999
|
2254 |
-
- type: mrr_at_3
|
2255 |
-
value: 81.667
|
2256 |
-
- type: mrr_at_5
|
2257 |
-
value: 83.06700000000001
|
2258 |
-
- type: ndcg_at_1
|
2259 |
-
value: 66
|
2260 |
-
- type: ndcg_at_10
|
2261 |
-
value: 58.059000000000005
|
2262 |
-
- type: ndcg_at_100
|
2263 |
-
value: 44.316
|
2264 |
-
- type: ndcg_at_1000
|
2265 |
-
value: 43.147000000000006
|
2266 |
-
- type: ndcg_at_3
|
2267 |
-
value: 63.815999999999995
|
2268 |
-
- type: ndcg_at_5
|
2269 |
-
value: 63.005
|
2270 |
-
- type: precision_at_1
|
2271 |
-
value: 72
|
2272 |
-
- type: precision_at_10
|
2273 |
-
value: 61.4
|
2274 |
-
- type: precision_at_100
|
2275 |
-
value: 45.62
|
2276 |
-
- type: precision_at_1000
|
2277 |
-
value: 19.866
|
2278 |
-
- type: precision_at_3
|
2279 |
-
value: 70
|
2280 |
-
- type: precision_at_5
|
2281 |
-
value: 68.8
|
2282 |
-
- type: recall_at_1
|
2283 |
-
value: 0.198
|
2284 |
-
- type: recall_at_10
|
2285 |
-
value: 1.517
|
2286 |
-
- type: recall_at_100
|
2287 |
-
value: 10.587
|
2288 |
-
- type: recall_at_1000
|
2289 |
-
value: 41.233
|
2290 |
-
- type: recall_at_3
|
2291 |
-
value: 0.573
|
2292 |
-
- type: recall_at_5
|
2293 |
-
value: 0.907
|
2294 |
-
- task:
|
2295 |
-
type: Retrieval
|
2296 |
-
dataset:
|
2297 |
-
type: webis-touche2020
|
2298 |
-
name: MTEB Touche2020
|
2299 |
-
config: default
|
2300 |
-
split: test
|
2301 |
-
revision: None
|
2302 |
-
metrics:
|
2303 |
-
- type: map_at_1
|
2304 |
-
value: 1.894
|
2305 |
-
- type: map_at_10
|
2306 |
-
value: 8.488999999999999
|
2307 |
-
- type: map_at_100
|
2308 |
-
value: 14.445
|
2309 |
-
- type: map_at_1000
|
2310 |
-
value: 16.078
|
2311 |
-
- type: map_at_3
|
2312 |
-
value: 4.589
|
2313 |
-
- type: map_at_5
|
2314 |
-
value: 6.019
|
2315 |
-
- type: mrr_at_1
|
2316 |
-
value: 22.448999999999998
|
2317 |
-
- type: mrr_at_10
|
2318 |
-
value: 39.82
|
2319 |
-
- type: mrr_at_100
|
2320 |
-
value: 40.752
|
2321 |
-
- type: mrr_at_1000
|
2322 |
-
value: 40.771
|
2323 |
-
- type: mrr_at_3
|
2324 |
-
value: 34.354
|
2325 |
-
- type: mrr_at_5
|
2326 |
-
value: 37.721
|
2327 |
-
- type: ndcg_at_1
|
2328 |
-
value: 19.387999999999998
|
2329 |
-
- type: ndcg_at_10
|
2330 |
-
value: 21.563
|
2331 |
-
- type: ndcg_at_100
|
2332 |
-
value: 33.857
|
2333 |
-
- type: ndcg_at_1000
|
2334 |
-
value: 46.199
|
2335 |
-
- type: ndcg_at_3
|
2336 |
-
value: 22.296
|
2337 |
-
- type: ndcg_at_5
|
2338 |
-
value: 21.770999999999997
|
2339 |
-
- type: precision_at_1
|
2340 |
-
value: 22.448999999999998
|
2341 |
-
- type: precision_at_10
|
2342 |
-
value: 19.796
|
2343 |
-
- type: precision_at_100
|
2344 |
-
value: 7.142999999999999
|
2345 |
-
- type: precision_at_1000
|
2346 |
-
value: 1.541
|
2347 |
-
- type: precision_at_3
|
2348 |
-
value: 24.490000000000002
|
2349 |
-
- type: precision_at_5
|
2350 |
-
value: 22.448999999999998
|
2351 |
-
- type: recall_at_1
|
2352 |
-
value: 1.894
|
2353 |
-
- type: recall_at_10
|
2354 |
-
value: 14.931
|
2355 |
-
- type: recall_at_100
|
2356 |
-
value: 45.524
|
2357 |
-
- type: recall_at_1000
|
2358 |
-
value: 83.243
|
2359 |
-
- type: recall_at_3
|
2360 |
-
value: 5.712
|
2361 |
-
- type: recall_at_5
|
2362 |
-
value: 8.386000000000001
|
2363 |
-
- task:
|
2364 |
-
type: Classification
|
2365 |
-
dataset:
|
2366 |
-
type: mteb/toxic_conversations_50k
|
2367 |
-
name: MTEB ToxicConversationsClassification
|
2368 |
-
config: default
|
2369 |
-
split: test
|
2370 |
-
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2371 |
-
metrics:
|
2372 |
-
- type: accuracy
|
2373 |
-
value: 71.049
|
2374 |
-
- type: ap
|
2375 |
-
value: 13.85116971310922
|
2376 |
-
- type: f1
|
2377 |
-
value: 54.37504302487686
|
2378 |
-
- task:
|
2379 |
-
type: Classification
|
2380 |
-
dataset:
|
2381 |
-
type: mteb/tweet_sentiment_extraction
|
2382 |
-
name: MTEB TweetSentimentExtractionClassification
|
2383 |
-
config: default
|
2384 |
-
split: test
|
2385 |
-
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
2386 |
-
metrics:
|
2387 |
-
- type: accuracy
|
2388 |
-
value: 64.1312959818902
|
2389 |
-
- type: f1
|
2390 |
-
value: 64.11413877009383
|
2391 |
-
- task:
|
2392 |
-
type: Clustering
|
2393 |
-
dataset:
|
2394 |
-
type: mteb/twentynewsgroups-clustering
|
2395 |
-
name: MTEB TwentyNewsgroupsClustering
|
2396 |
-
config: default
|
2397 |
-
split: test
|
2398 |
-
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2399 |
-
metrics:
|
2400 |
-
- type: v_measure
|
2401 |
-
value: 54.13103431861502
|
2402 |
-
- task:
|
2403 |
-
type: PairClassification
|
2404 |
-
dataset:
|
2405 |
-
type: mteb/twittersemeval2015-pairclassification
|
2406 |
-
name: MTEB TwitterSemEval2015
|
2407 |
-
config: default
|
2408 |
-
split: test
|
2409 |
-
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2410 |
-
metrics:
|
2411 |
-
- type: cos_sim_accuracy
|
2412 |
-
value: 87.327889372355
|
2413 |
-
- type: cos_sim_ap
|
2414 |
-
value: 77.42059895975699
|
2415 |
-
- type: cos_sim_f1
|
2416 |
-
value: 71.02706903250873
|
2417 |
-
- type: cos_sim_precision
|
2418 |
-
value: 69.75324344950394
|
2419 |
-
- type: cos_sim_recall
|
2420 |
-
value: 72.34828496042216
|
2421 |
-
- type: dot_accuracy
|
2422 |
-
value: 87.327889372355
|
2423 |
-
- type: dot_ap
|
2424 |
-
value: 77.4209479346677
|
2425 |
-
- type: dot_f1
|
2426 |
-
value: 71.02706903250873
|
2427 |
-
- type: dot_precision
|
2428 |
-
value: 69.75324344950394
|
2429 |
-
- type: dot_recall
|
2430 |
-
value: 72.34828496042216
|
2431 |
-
- type: euclidean_accuracy
|
2432 |
-
value: 87.327889372355
|
2433 |
-
- type: euclidean_ap
|
2434 |
-
value: 77.42096495861037
|
2435 |
-
- type: euclidean_f1
|
2436 |
-
value: 71.02706903250873
|
2437 |
-
- type: euclidean_precision
|
2438 |
-
value: 69.75324344950394
|
2439 |
-
- type: euclidean_recall
|
2440 |
-
value: 72.34828496042216
|
2441 |
-
- type: manhattan_accuracy
|
2442 |
-
value: 87.31000774870358
|
2443 |
-
- type: manhattan_ap
|
2444 |
-
value: 77.38930750711619
|
2445 |
-
- type: manhattan_f1
|
2446 |
-
value: 71.07935314027831
|
2447 |
-
- type: manhattan_precision
|
2448 |
-
value: 67.70957726295677
|
2449 |
-
- type: manhattan_recall
|
2450 |
-
value: 74.80211081794195
|
2451 |
-
- type: max_accuracy
|
2452 |
-
value: 87.327889372355
|
2453 |
-
- type: max_ap
|
2454 |
-
value: 77.42096495861037
|
2455 |
-
- type: max_f1
|
2456 |
-
value: 71.07935314027831
|
2457 |
-
- task:
|
2458 |
-
type: PairClassification
|
2459 |
-
dataset:
|
2460 |
-
type: mteb/twitterurlcorpus-pairclassification
|
2461 |
-
name: MTEB TwitterURLCorpus
|
2462 |
-
config: default
|
2463 |
-
split: test
|
2464 |
-
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2465 |
-
metrics:
|
2466 |
-
- type: cos_sim_accuracy
|
2467 |
-
value: 89.58939729110878
|
2468 |
-
- type: cos_sim_ap
|
2469 |
-
value: 87.17594155025475
|
2470 |
-
- type: cos_sim_f1
|
2471 |
-
value: 79.21146953405018
|
2472 |
-
- type: cos_sim_precision
|
2473 |
-
value: 76.8918527109307
|
2474 |
-
- type: cos_sim_recall
|
2475 |
-
value: 81.67539267015707
|
2476 |
-
- type: dot_accuracy
|
2477 |
-
value: 89.58939729110878
|
2478 |
-
- type: dot_ap
|
2479 |
-
value: 87.17593963273593
|
2480 |
-
- type: dot_f1
|
2481 |
-
value: 79.21146953405018
|
2482 |
-
- type: dot_precision
|
2483 |
-
value: 76.8918527109307
|
2484 |
-
- type: dot_recall
|
2485 |
-
value: 81.67539267015707
|
2486 |
-
- type: euclidean_accuracy
|
2487 |
-
value: 89.58939729110878
|
2488 |
-
- type: euclidean_ap
|
2489 |
-
value: 87.17592466925834
|
2490 |
-
- type: euclidean_f1
|
2491 |
-
value: 79.21146953405018
|
2492 |
-
- type: euclidean_precision
|
2493 |
-
value: 76.8918527109307
|
2494 |
-
- type: euclidean_recall
|
2495 |
-
value: 81.67539267015707
|
2496 |
-
- type: manhattan_accuracy
|
2497 |
-
value: 89.62626615438352
|
2498 |
-
- type: manhattan_ap
|
2499 |
-
value: 87.16589873161546
|
2500 |
-
- type: manhattan_f1
|
2501 |
-
value: 79.25143598295348
|
2502 |
-
- type: manhattan_precision
|
2503 |
-
value: 76.39494177323712
|
2504 |
-
- type: manhattan_recall
|
2505 |
-
value: 82.32984293193716
|
2506 |
-
- type: max_accuracy
|
2507 |
-
value: 89.62626615438352
|
2508 |
-
- type: max_ap
|
2509 |
-
value: 87.17594155025475
|
2510 |
-
- type: max_f1
|
2511 |
-
value: 79.25143598295348
|
2512 |
---
|
2513 |
|
2514 |
-
#
|
2515 |
-
We introduce **Instructor**👨🏫, an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and domains (e.g., science, finance, etc.) ***by simply providing the task instruction, without any finetuning***. Instructor👨 achieves sota on 70 diverse embedding tasks ([MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard))!
|
2516 |
-
The model is easy to use with **our customized** `sentence-transformer` library. For more details, check out [our paper](https://arxiv.org/abs/2212.09741) and [project page](https://instructor-embedding.github.io/)!
|
2517 |
|
2518 |
-
|
|
|
|
|
2519 |
|
2520 |
-
|
2521 |
-
* 12/21: We released our [paper](https://arxiv.org/abs/2212.09741), [code](https://github.com/HKUNLP/instructor-embedding), [checkpoint](https://huggingface.co/hkunlp/instructor-large) and [project page](https://instructor-embedding.github.io/)! Check them out!
|
2522 |
|
2523 |
-
##
|
2524 |
-
<hr />
|
2525 |
|
2526 |
-
|
2527 |
-
```bash
|
2528 |
-
pip install InstructorEmbedding
|
2529 |
-
```
|
2530 |
|
2531 |
-
|
2532 |
-
Then you can use the model like this to calculate domain-specific and task-aware embeddings:
|
2533 |
-
```python
|
2534 |
-
from InstructorEmbedding import INSTRUCTOR
|
2535 |
-
model = INSTRUCTOR('hkunlp/instructor-large')
|
2536 |
-
sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments"
|
2537 |
-
instruction = "Represent the Science title:"
|
2538 |
-
embeddings = model.encode([[instruction,sentence]])
|
2539 |
-
print(embeddings)
|
2540 |
-
```
|
2541 |
|
2542 |
-
##
|
2543 |
-
|
|
|
|
|
|
|
2544 |
|
2545 |
-
|
2546 |
-
If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions:
|
2547 |
|
2548 |
-
|
2549 |
-
|
2550 |
-
|
2551 |
-
|
|
|
2552 |
|
2553 |
-
|
2554 |
-
|
2555 |
-
|
2556 |
-
|
2557 |
-
|
2558 |
-
|
2559 |
-
|
2560 |
-
|
2561 |
-
|
2562 |
-
|
2563 |
-
|
2564 |
-
|
2565 |
-
|
2566 |
|
2567 |
-
## Information Retrieval
|
2568 |
-
You can also use **customized embeddings** for information retrieval.
|
2569 |
```python
|
2570 |
-
|
2571 |
-
|
2572 |
-
|
2573 |
-
|
2574 |
-
|
2575 |
-
|
2576 |
-
|
2577 |
-
|
2578 |
-
|
2579 |
-
|
2580 |
-
|
|
|
|
|
|
|
2581 |
```
|
2582 |
|
2583 |
-
|
2584 |
-
|
2585 |
-
|
2586 |
-
|
2587 |
-
|
2588 |
-
|
2589 |
-
|
2590 |
-
|
2591 |
-
|
2592 |
-
|
2593 |
-
|
2594 |
-
|
2595 |
-
|
2596 |
-
|
2597 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
- dementia
|
13 |
- dementia disease
|
14 |
language: en
|
15 |
+
inference: true
|
16 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
---
|
18 |
|
19 |
+
# **My LLM Model: Dementia Knowledge Assistant**
|
|
|
|
|
20 |
|
21 |
+
**Model Name:** `Dementia-llm-model`
|
22 |
+
**Description:**
|
23 |
+
This is a fine-tuned **Large Language Model (LLM)** designed to assist with dementia-related knowledge retrieval and question-answering tasks. The model uses advanced embeddings (`hkunlp/instructor-large`) and a **FAISS vector store** for efficient contextual search and retrieval.
|
24 |
|
25 |
+
---
|
|
|
26 |
|
27 |
+
## **Model Summary**
|
|
|
28 |
|
29 |
+
This LLM is fine-tuned on a dataset specifically curated for dementia-related content, including medical knowledge, patient care, and treatment practices. It leverages state-of-the-art embeddings to generate accurate and contextually relevant answers to user queries. The model supports researchers, caregivers, and medical professionals in accessing domain-specific information quickly.
|
|
|
|
|
|
|
30 |
|
31 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
## **Key Features**
|
34 |
+
- **Domain-Specific Knowledge:** Trained on a dementia-related dataset for precise answers.
|
35 |
+
- **Embeddings:** Utilizes the `hkunlp/instructor-large` embedding model for semantic understanding.
|
36 |
+
- **Retrieval-augmented QA:** Employs FAISS vector databases for efficient document retrieval.
|
37 |
+
- **Custom Prompting:** Generates responses based on well-designed prompts to ensure factual accuracy.
|
38 |
|
39 |
+
---
|
|
|
40 |
|
41 |
+
## **Intended Use**
|
42 |
+
- **Primary Use Case:** Question-answering related to dementia.
|
43 |
+
- **Secondary Use Cases:** Exploring dementia knowledge, aiding medical students or caregivers in understanding dementia-related topics, and supporting researchers.
|
44 |
+
- **Input Format:** Text queries in natural language.
|
45 |
+
- **Output Format:** Natural language responses relevant to the context provided.
|
46 |
|
47 |
+
---
|
48 |
+
|
49 |
+
## **Limitations**
|
50 |
+
- **Context Dependency:** Model outputs are only as good as the context provided by the FAISS retriever. If the context is insufficient, the model may respond with "I don't know."
|
51 |
+
- **Static Knowledge:** The model is limited to the knowledge present in its training dataset. It may not include the latest medical breakthroughs or research after the training cutoff.
|
52 |
+
- **Biases:** The model might inherit biases present in the training data.
|
53 |
+
|
54 |
+
---
|
55 |
+
|
56 |
+
## **How to Use**
|
57 |
+
|
58 |
+
### **Using the Model Programmatically**
|
59 |
+
You can use the model directly in Python:
|
60 |
|
|
|
|
|
61 |
```python
|
62 |
+
from transformers import pipeline
|
63 |
+
|
64 |
+
model_name = "rohitashva/my-llm-model"
|
65 |
+
|
66 |
+
# Load the model and tokenizer
|
67 |
+
qa_pipeline = pipeline("question-answering", model=model_name)
|
68 |
+
|
69 |
+
# Example Query
|
70 |
+
result = qa_pipeline({
|
71 |
+
"question": "What are the symptoms of early-stage dementia?",
|
72 |
+
"context": "Provide relevant details from a dementia dataset."
|
73 |
+
})
|
74 |
+
|
75 |
+
print(result)
|
76 |
```
|
77 |
|
78 |
+
---
|
79 |
+
### **Training Details**
|
80 |
+
|
81 |
+
• Base Model: hkunlp/instructor-large
|
82 |
+
• Frameworks: PyTorch, Transformers
|
83 |
+
• Embedding Model: HuggingFace Embeddings (hkunlp/instructor-large)
|
84 |
+
• Fine-Tuning: FAISS-based vector retrieval augmented with dementia-specific content.
|
85 |
+
• Hardware: Trained on a GPU with sufficient VRAM for embeddings and fine-tuning tasks.
|
86 |
+
|
87 |
+
---
|
88 |
+
|
89 |
+
|
90 |
+
## Further Information
|
91 |
+
|
92 |
+
### Dataset
|
93 |
+
|
94 |
+
The model was trained on a proprietary dementia-specific dataset, including structured knowledge, medical texts, and patient case studies. The data is preprocessed into embeddings for efficient retrieval.
|
95 |
+
|
96 |
+
### Model Performance
|
97 |
+
|
98 |
+
• Accuracy: Validated on a subset of dementia-related QA pairs.
|
99 |
+
• Response Time: Optimized for fast retrieval via FAISS vector storage.
|
100 |
+
|
101 |
+
### Deployment
|
102 |
+
|
103 |
+
• Hugging Face Spaces: The model is deployed on Hugging Face Spaces, enabling users to interact via a web-based interface.
|
104 |
+
• API Support: The model is available for integration into custom workflows using the Hugging Face Inference API.
|
105 |
+
|
106 |
+
### Acknowledgments
|
107 |
+
|
108 |
+
• Hugging Face team for the transformers library.
|
109 |
+
• Contributors to the hkunlp/instructor-large embedding model.
|
110 |
+
• Medical experts and datasets used for model fine-tuning.
|
111 |
+
|