--- license: apache-2.0 base_model: sshleifer/distilbart-xsum-12-6 tags: - generated_from_trainer model-index: - name: bart-abs-1509-0313-lr-3e-05-bs-4-maxep-10 results: [] --- # bart-abs-1509-0313-lr-3e-05-bs-4-maxep-10 This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-6](https://huggingface.co/sshleifer/distilbart-xsum-12-6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5339 - Rouge/rouge1: 0.4605 - Rouge/rouge2: 0.2065 - Rouge/rougel: 0.3887 - Rouge/rougelsum: 0.3902 - Bertscore/bertscore-precision: 0.8931 - Bertscore/bertscore-recall: 0.8914 - Bertscore/bertscore-f1: 0.8921 - Meteor: 0.4157 - Gen Len: 37.8364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge/rouge1 | Rouge/rouge2 | Rouge/rougel | Rouge/rougelsum | Bertscore/bertscore-precision | Bertscore/bertscore-recall | Bertscore/bertscore-f1 | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:------:|:-------:| | 1.2307 | 1.0 | 217 | 2.1312 | 0.4591 | 0.2098 | 0.3873 | 0.3883 | 0.8977 | 0.892 | 0.8947 | 0.4036 | 37.4909 | | 0.888 | 2.0 | 434 | 2.2053 | 0.4516 | 0.2075 | 0.3834 | 0.3857 | 0.8957 | 0.8906 | 0.893 | 0.3977 | 35.2273 | | 0.784 | 3.0 | 651 | 2.3695 | 0.4573 | 0.2136 | 0.3893 | 0.3911 | 0.8972 | 0.8904 | 0.8937 | 0.4003 | 34.8 | | 0.5673 | 4.0 | 868 | 2.6218 | 0.4714 | 0.2118 | 0.3982 | 0.3996 | 0.8947 | 0.8924 | 0.8934 | 0.4235 | 39.2727 | | 0.4163 | 5.0 | 1085 | 2.9151 | 0.4683 | 0.2131 | 0.4005 | 0.4023 | 0.8958 | 0.8916 | 0.8935 | 0.4129 | 36.7545 | | 0.3021 | 6.0 | 1302 | 3.0962 | 0.4648 | 0.2045 | 0.3918 | 0.3935 | 0.8967 | 0.893 | 0.8947 | 0.4119 | 37.0636 | | 0.2266 | 7.0 | 1519 | 3.2782 | 0.4639 | 0.2074 | 0.3907 | 0.3925 | 0.8942 | 0.8941 | 0.894 | 0.4203 | 38.9273 | | 0.1684 | 8.0 | 1736 | 3.4198 | 0.4565 | 0.1964 | 0.3822 | 0.3841 | 0.8934 | 0.8905 | 0.8918 | 0.4035 | 37.1818 | | 0.1347 | 9.0 | 1953 | 3.4878 | 0.4723 | 0.2189 | 0.3987 | 0.4005 | 0.8954 | 0.8957 | 0.8954 | 0.4308 | 39.5273 | | 0.1124 | 10.0 | 2170 | 3.5339 | 0.4605 | 0.2065 | 0.3887 | 0.3902 | 0.8931 | 0.8914 | 0.8921 | 0.4157 | 37.8364 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1