rishavranaut/QWEN_without_time
Browse files
README.md
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
base_model: Qwen/Qwen2-7B
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: QWEN_without_time
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# QWEN_without_time
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [Qwen/Qwen2-7B](https://huggingface.co/Qwen/Qwen2-7B) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.3017
|
22 |
+
- Balanced Accuracy: 0.8957
|
23 |
+
- Accuracy: 0.8957
|
24 |
+
- Micro F1: 0.8957
|
25 |
+
- Macro F1: 0.8957
|
26 |
+
- Weighted F1: 0.8957
|
27 |
+
- Classification Report: precision recall f1-score support
|
28 |
+
|
29 |
+
0 0.90 0.89 0.90 386
|
30 |
+
1 0.89 0.90 0.90 381
|
31 |
+
|
32 |
+
accuracy 0.90 767
|
33 |
+
macro avg 0.90 0.90 0.90 767
|
34 |
+
weighted avg 0.90 0.90 0.90 767
|
35 |
+
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 0.0001
|
55 |
+
- train_batch_size: 16
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- num_epochs: 3
|
61 |
+
|
62 |
+
### Training results
|
63 |
+
|
64 |
+
| Training Loss | Epoch | Step | Validation Loss | Balanced Accuracy | Accuracy | Micro F1 | Macro F1 | Weighted F1 | Classification Report |
|
65 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------:|:--------:|:--------:|:-----------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
66 |
+
| 0.5773 | 1.0 | 384 | 0.3372 | 0.8736 | 0.8735 | 0.8735 | 0.8735 | 0.8735 | precision recall f1-score support
|
67 |
+
|
68 |
+
0 0.88 0.87 0.87 386
|
69 |
+
1 0.87 0.88 0.87 381
|
70 |
+
|
71 |
+
accuracy 0.87 767
|
72 |
+
macro avg 0.87 0.87 0.87 767
|
73 |
+
weighted avg 0.87 0.87 0.87 767
|
74 |
+
|
|
75 |
+
| 0.3341 | 2.0 | 768 | 0.4140 | 0.8624 | 0.8631 | 0.8631 | 0.8612 | 0.8613 | precision recall f1-score support
|
76 |
+
|
77 |
+
0 0.80 0.97 0.88 386
|
78 |
+
1 0.97 0.75 0.84 381
|
79 |
+
|
80 |
+
accuracy 0.86 767
|
81 |
+
macro avg 0.88 0.86 0.86 767
|
82 |
+
weighted avg 0.88 0.86 0.86 767
|
83 |
+
|
|
84 |
+
| 0.2934 | 3.0 | 1152 | 0.3017 | 0.8957 | 0.8957 | 0.8957 | 0.8957 | 0.8957 | precision recall f1-score support
|
85 |
+
|
86 |
+
0 0.90 0.89 0.90 386
|
87 |
+
1 0.89 0.90 0.90 381
|
88 |
+
|
89 |
+
accuracy 0.90 767
|
90 |
+
macro avg 0.90 0.90 0.90 767
|
91 |
+
weighted avg 0.90 0.90 0.90 767
|
92 |
+
|
|
93 |
+
|
94 |
+
|
95 |
+
### Framework versions
|
96 |
+
|
97 |
+
- PEFT 0.11.1
|
98 |
+
- Transformers 4.41.2
|
99 |
+
- Pytorch 2.3.0+cu121
|
100 |
+
- Datasets 2.19.1
|
101 |
+
- Tokenizers 0.19.1
|