--- license: mit datasets: - FinGPT/fingpt-sentiment-train language: - en metrics: - accuracy library_name: transformers pipeline_tag: text-classification --- # Model Card for Model ID https://huggingface.co/rezahf2024/fine_tuned_financial_setiment_analysis_gpt2_model ## Model Details ### Model Description This a fine-tuned GPT2 model on the https://huggingface.co/datasets/FinGPT/fingpt-sentiment-train dataset for the downstream financial sentiment analysis. - **Developed by:** Rezaul Karim, Ph.D. - **Model type:** GPT2ForSequenceClassification (Fine-tuned GPT2) - **Language(s) (NLP):** financial sentiment analysis - **License:** MIT - **Finetuned from the model:** https://huggingface.co/datasets/mteb/tweet_sentiment_extraction ### Model Sources - **Repository:** https://github.com/rezacsedu/financial_sentiment_analysis_LLM - **Paper [optional]:** on the way - **Demo [optional]:** on the way ## Uses The model is already fine-tuned for downstream financial sentiment analysis tasks. ``` import torch # Load your fine-tuned model and tokenizer model = AutoModelForSequenceClassification.from_pretrained("fine_tuned_finsetiment_model") tokenizer = AutoTokenizer.from_pretrained("fine_tuned_finsetiment_model") # Define the label mapping as provided label_mapping_reverse = { 'LABEL_0': 'mildly positive', 'LABEL_1': 'mildly negative', 'LABEL_2': 'moderately negative', 'LABEL_3': 'moderately positive', 'LABEL_4': 'positive', 'LABEL_5': 'negative', 'LABEL_6': 'neutral', 'LABEL_7': 'strong negative', 'LABEL_8': 'strong positive' } def model_predict(text): # Tokenize the input text inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) # Get predictions from the model with torch.no_grad(): logits = model(**inputs).logits # Convert to probabilities probabilities = torch.nn.functional.softmax(logits, dim=-1) # Create a list of tuples with label and probability label_prob_pairs = [(label_mapping_reverse[label_idx], prob.item()) for label_idx, prob in enumerate(probabilities.squeeze())] # Sort the list by probability in descending order sorted_label_prob_pairs = sorted(label_prob_pairs, key=lambda pair: pair[1], reverse=True) # Return the sorted list of label-probability pairs return sorted_label_prob_pairs # Example usage text = "Intel Corporation (NASDAQ: INTC) has unveiled a remote verification platform called Project Amber" predictions = model_predict(text) for label, prob in predictions: print(f"{label}: {prob:.3f}") ``` ## Training Details ### Training Data ``` from transformers import GPT2Tokenizer dataset = load_dataset("FinGPT/fingpt-sentiment-train") tokenizer = GPT2Tokenizer.from_pretrained("gpt2") tokenizer.pad_token = tokenizer.eos_token def tokenize_function(examples): return tokenizer(examples["input"], padding="max_length", truncation=True) tokenized_datasets = dataset.map(tokenize_function, batched=True) from datasets import DatasetDict import random import string def generate_random_id(): return ''.join(random.choices(string.ascii_lowercase + string.digits, k=10)) unique_outputs = set(dataset['train']['output']) #label_mapping = {'mildly positive': 0, 'positive': 1, 'strong positive':2, 'moderately positive': 3, 'negative': 4, 'neutral': 5} # Add more mappings as needed label_mapping = {label: index for index, label in enumerate(unique_outputs)} def transform_dataset(dataset): dataset = dataset.rename_column('input', 'text') dataset = dataset.rename_column('output', 'label_text') dataset = dataset.remove_columns(['instruction']) dataset = dataset.add_column('id', [generate_random_id() for _ in range(dataset.num_rows)]) dataset = dataset.add_column('label', [label_mapping[label_text] for label_text in dataset['label_text']]) return dataset transformed_dataset = DatasetDict({'train': transform_dataset(tokenized_datasets['train'])}) transformed_dataset['train'].set_format(type=None, columns=['id', 'text', 'label', 'label_text', 'input_ids', 'attention_mask']) train_test_split = transformed_dataset['train'].train_test_split(test_size=0.3, seed=42) tokenized_datasets['test'] = train_test_split['test'] tokenized_datasets['train'] = train_test_split['train'] small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(100)) small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(100)) ``` ### Fine-tune Procedure ``` from transformers import GPT2ForSequenceClassification from transformers import TrainingArguments, Trainer model = GPT2ForSequenceClassification.from_pretrained("gpt2", num_labels=9) training_args = TrainingArguments( output_dir="test_trainer", #evaluation_strategy="epoch", per_device_train_batch_size=1, # Reduce batch size here per_device_eval_batch_size=1, # Optionally, reduce for evaluation as well gradient_accumulation_steps=4 ) trainer = Trainer( model=model, args=training_args, train_dataset=small_train_dataset, eval_dataset=small_eval_dataset, compute_metrics=compute_metrics, ) trainer.train() trainer.evaluate() trainer.save_model("fine_tuned_finsetiment_model") ``` #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] ## Evaluation ``` import evaluate metric = evaluate.load("accuracy") def compute_metrics(eval_pred): logits, labels = eval_pred predictions = np.argmax(logits, axis=-1) return metric.compute(predictions=predictions, references=labels) ``` ### Results #### Summary ## Citation [optional] **BibTeX:** ## Model Card Contact rezaul.karim.fit@gmail.com