{ "name": "root", "gauges": { "Pyramids.Policy.Entropy.mean": { "value": 0.2737698554992676, "min": 0.2737698554992676, "max": 1.402940273284912, "count": 100 }, "Pyramids.Policy.Entropy.sum": { "value": 8239.3779296875, "min": 8239.3779296875, "max": 42559.59765625, "count": 100 }, "Pyramids.Step.mean": { "value": 2999941.0, "min": 29952.0, "max": 2999941.0, "count": 100 }, "Pyramids.Step.sum": { "value": 2999941.0, "min": 29952.0, "max": 2999941.0, "count": 100 }, "Pyramids.Policy.ExtrinsicValueEstimate.mean": { "value": 0.4457398056983948, "min": -0.10019682347774506, "max": 0.5420278310775757, "count": 100 }, "Pyramids.Policy.ExtrinsicValueEstimate.sum": { "value": 119.90400695800781, "min": -24.14743423461914, "max": 146.88954162597656, "count": 100 }, "Pyramids.Policy.RndValueEstimate.mean": { "value": -0.0020317237358540297, "min": -0.033382024616003036, "max": 0.12539862096309662, "count": 100 }, "Pyramids.Policy.RndValueEstimate.sum": { "value": -0.5465337038040161, "min": -8.312124252319336, "max": 29.71947479248047, "count": 100 }, "Pyramids.Losses.PolicyLoss.mean": { "value": 0.06909359435110123, "min": 0.06815462327513695, "max": 0.07882452072380827, "count": 100 }, "Pyramids.Losses.PolicyLoss.sum": { "value": 0.9673103209154172, "min": 0.5195201608807863, "max": 1.1772807364595257, "count": 100 }, "Pyramids.Losses.ValueLoss.mean": { "value": 0.011840098765841342, "min": 7.762069062235192e-06, "max": 0.013329951953892305, "count": 100 }, "Pyramids.Losses.ValueLoss.sum": { "value": 0.1657613827217788, "min": 9.314482874682231e-05, "max": 0.18957426100314478, "count": 100 }, "Pyramids.Policy.LearningRate.mean": { "value": 4.918614130000005e-07, "min": 4.918614130000005e-07, "max": 9.946118149120001e-05, "count": 100 }, "Pyramids.Policy.LearningRate.sum": { "value": 6.886059782000007e-06, "min": 6.886059782000007e-06, "max": 0.0013231402101931999, "count": 100 }, "Pyramids.Policy.Epsilon.mean": { "value": 0.1009835238095238, "min": 0.1009835238095238, "max": 0.2989223619047619, "count": 100 }, "Pyramids.Policy.Epsilon.sum": { "value": 1.4137693333333332, "min": 1.4137693333333332, "max": 4.046280266666667, "count": 100 }, "Pyramids.Policy.Beta.mean": { "value": 5.912701428571433e-05, "min": 5.912701428571433e-05, "max": 0.009946171977142858, "count": 100 }, "Pyramids.Policy.Beta.sum": { "value": 0.0008277782000000007, "min": 0.0008277782000000007, "max": 0.13232169932, "count": 100 }, "Pyramids.Losses.RNDLoss.mean": { "value": 0.0010856071021407843, "min": 0.0010856071021407843, "max": 0.07840841263532639, "count": 100 }, "Pyramids.Losses.RNDLoss.sum": { "value": 0.015198498964309692, "min": 0.015198498964309692, "max": 0.5488588809967041, "count": 100 }, "Pyramids.Environment.EpisodeLength.mean": { "value": 420.54794520547944, "min": 351.5375, "max": 999.0, "count": 100 }, "Pyramids.Environment.EpisodeLength.sum": { "value": 30700.0, "min": 15984.0, "max": 34260.0, "count": 100 }, "Pyramids.Environment.CumulativeReward.mean": { "value": 1.3876191502156323, "min": -1.0000000521540642, "max": 1.5484424838796258, "count": 100 }, "Pyramids.Environment.CumulativeReward.sum": { "value": 101.29619796574116, "min": -30.739201694726944, "max": 132.84879855066538, "count": 100 }, "Pyramids.Policy.ExtrinsicReward.mean": { "value": 1.3876191502156323, "min": -1.0000000521540642, "max": 1.5484424838796258, "count": 100 }, "Pyramids.Policy.ExtrinsicReward.sum": { "value": 101.29619796574116, "min": -30.739201694726944, "max": 132.84879855066538, "count": 100 }, "Pyramids.Policy.RndReward.mean": { "value": 0.005058212901319278, "min": 0.004452020007192914, "max": 3.542724263621494, "count": 100 }, "Pyramids.Policy.RndReward.sum": { "value": 0.3692495417963073, "min": 0.35210325576917967, "max": 56.68358821794391, "count": 100 }, "Pyramids.IsTraining.mean": { "value": 1.0, "min": 1.0, "max": 1.0, "count": 100 }, "Pyramids.IsTraining.sum": { "value": 1.0, "min": 1.0, "max": 1.0, "count": 100 } }, "metadata": { "timer_format_version": "0.1.0", "start_time_seconds": "1719169236", "python_version": "3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]", "command_line_arguments": "/usr/local/bin/mlagents-learn ./config/ppo/PyramidsRND.yaml --env=./training-envs-executables/linux/Pyramids/Pyramids --run-id=Pyramids Training --no-graphics --force", "mlagents_version": "1.1.0.dev0", "mlagents_envs_version": "1.1.0.dev0", "communication_protocol_version": "1.5.0", "pytorch_version": "2.2.1+cu121", "numpy_version": "1.23.5", "end_time_seconds": "1719177232" }, "total": 7996.226054188002, "count": 1, "self": 0.42982170100003714, "children": { "run_training.setup": { "total": 0.03981155500150635, "count": 1, "self": 0.03981155500150635 }, "TrainerController.start_learning": { "total": 7995.756420932001, "count": 1, "self": 3.485074950800481, "children": { "TrainerController._reset_env": { "total": 1.5675994770008401, "count": 1, "self": 1.5675994770008401 }, "TrainerController.advance": { "total": 7990.513709658195, "count": 190986, "self": 3.166204349283362, "children": { "env_step": { "total": 3242.255258412175, "count": 190986, "self": 2967.8449710275963, "children": { "SubprocessEnvManager._take_step": { "total": 271.97947607986134, "count": 190986, "self": 9.884498323266598, "children": { "TorchPolicy.evaluate": { "total": 262.09497775659474, "count": 187564, "self": 262.09497775659474 } } }, "workers": { "total": 2.430811304717281, "count": 190986, "self": 0.0, "children": { "worker_root": { "total": 7987.663249079316, "count": 190986, "is_parallel": true, "self": 5276.534172413187, "children": { "run_training.setup": { "total": 0.0, "count": 0, "is_parallel": true, "self": 0.0, "children": { "steps_from_proto": { "total": 0.0014355950006574858, "count": 1, "is_parallel": true, "self": 0.00043174699931114446, "children": { "_process_rank_one_or_two_observation": { "total": 0.0010038480013463413, "count": 8, "is_parallel": true, "self": 0.0010038480013463413 } } }, "UnityEnvironment.step": { "total": 0.032726117000493105, "count": 1, "is_parallel": true, "self": 0.0003178059978381498, "children": { "UnityEnvironment._generate_step_input": { "total": 0.00020648500139941461, "count": 1, "is_parallel": true, "self": 0.00020648500139941461 }, "communicator.exchange": { "total": 0.03126808400156733, "count": 1, "is_parallel": true, "self": 0.03126808400156733 }, "steps_from_proto": { "total": 0.000933741999688209, "count": 1, "is_parallel": true, "self": 0.00020824199964408763, "children": { "_process_rank_one_or_two_observation": { "total": 0.0007255000000441214, "count": 8, "is_parallel": true, "self": 0.0007255000000441214 } } } } } } }, "UnityEnvironment.step": { "total": 2711.1290766661295, "count": 190985, "is_parallel": true, "self": 45.29417041007582, "children": { "UnityEnvironment._generate_step_input": { "total": 29.67409545886585, "count": 190985, "is_parallel": true, "self": 29.67409545886585 }, "communicator.exchange": { "total": 2518.4234110770103, "count": 190985, "is_parallel": true, "self": 2518.4234110770103 }, "steps_from_proto": { "total": 117.73739972017756, "count": 190985, "is_parallel": true, "self": 30.30138796990468, "children": { "_process_rank_one_or_two_observation": { "total": 87.43601175027288, "count": 1527880, "is_parallel": true, "self": 87.43601175027288 } } } } } } } } } } }, "trainer_advance": { "total": 4745.0922468967365, "count": 190986, "self": 7.109252085632761, "children": { "process_trajectory": { "total": 271.04050256012124, "count": 190986, "self": 270.18080457012184, "children": { "RLTrainer._checkpoint": { "total": 0.8596979899994039, "count": 6, "self": 0.8596979899994039 } } }, "_update_policy": { "total": 4466.9424922509825, "count": 1394, "self": 1725.7174520399494, "children": { "TorchPPOOptimizer.update": { "total": 2741.225040211033, "count": 182232, "self": 2741.225040211033 } } } } } } }, "trainer_threads": { "total": 7.43002601666376e-07, "count": 1, "self": 7.43002601666376e-07 }, "TrainerController._save_models": { "total": 0.19003610300205764, "count": 1, "self": 0.03214801100330078, "children": { "RLTrainer._checkpoint": { "total": 0.15788809199875686, "count": 1, "self": 0.15788809199875686 } } } } } } }