--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: en datasets: - lmqg/qg_squad pipeline_tag: text2text-generation tags: - question generation widget: - text: "generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records." example_title: "Question Generation Example 1" - text: "generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records." example_title: "Question Generation Example 2" - text: "generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records ." example_title: "Question Generation Example 3" model-index: - name: lmqg/t5-large-squad-no-paragraph results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_squad type: default args: default metrics: - name: BLEU4 type: bleu4 value: 25.36 - name: ROUGE-L type: rouge-l value: 52.53 - name: METEOR type: meteor value: 26.28 - name: BERTScore type: bertscore value: 90.88 - name: MoverScore type: moverscore value: 64.44 --- # Model Card of `lmqg/t5-large-squad-no-paragraph` This model is fine-tuned version of [t5-large](https://huggingface.co/t5-large) for question generation task on the [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). This model is fine-tuned without pargraph information but only the sentence that contains the answer. ### Overview - **Language model:** [t5-large](https://huggingface.co/t5-large) - **Language:** en - **Training data:** [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="en", model="lmqg/t5-large-squad-no-paragraph") # model prediction questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/t5-large-squad-no-paragraph") output = pipe("generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/t5-large-squad-no-paragraph/raw/main/eval/metric.first.sentence.sentence_answer.question.lmqg_qg_squad.default.json) | | Score | Type | Dataset | |:-----------|--------:|:--------|:---------------------------------------------------------------| | BERTScore | 90.88 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_1 | 57.49 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_2 | 41.59 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_3 | 32.1 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_4 | 25.36 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | METEOR | 26.28 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | MoverScore | 64.44 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | ROUGE_L | 52.53 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_squad - dataset_name: default - input_types: ['sentence_answer'] - output_types: ['question'] - prefix_types: ['qg'] - model: t5-large - max_length: 128 - max_length_output: 32 - epoch: 6 - batch: 16 - lr: 5e-05 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 4 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/t5-large-squad-no-paragraph/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```