---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qg_subjqa
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "<hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
  example_title: "Question Generation Example 1" 
- text: "Beyonce further expanded her acting career, starring as blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac Records."
  example_title: "Question Generation Example 2" 
- text: "Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic,  <hl> Cadillac Records <hl> ."
  example_title: "Question Generation Example 3" 
model-index:
- name: lmqg/bart-large-subjqa-grocery-qg
  results:
  - task:
      name: Text2text Generation
      type: text2text-generation
    dataset:
      name: lmqg/qg_subjqa
      type: grocery
      args: grocery
    metrics:
    - name: BLEU4 (Question Generation)
      type: bleu4_question_generation
      value: 1.93
    - name: ROUGE-L (Question Generation)
      type: rouge_l_question_generation
      value: 24.28
    - name: METEOR (Question Generation)
      type: meteor_question_generation
      value: 20.42
    - name: BERTScore (Question Generation)
      type: bertscore_question_generation
      value: 94.1
    - name: MoverScore (Question Generation)
      type: moverscore_question_generation
      value: 65.79
---

# Model Card of `lmqg/bart-large-subjqa-grocery-qg`
This model is fine-tuned version of [lmqg/bart-large-squad](https://huggingface.co/lmqg/bart-large-squad) for question generation task on the [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) (dataset_name: grocery) via [`lmqg`](https://github.com/asahi417/lm-question-generation).


### Overview
- **Language model:** [lmqg/bart-large-squad](https://huggingface.co/lmqg/bart-large-squad)   
- **Language:** en  
- **Training data:** [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) (grocery)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)

### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="en", model="lmqg/bart-large-subjqa-grocery-qg")

# model prediction
questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner")

```

- With `transformers`
```python
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/bart-large-subjqa-grocery-qg")
output = pipe("<hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")

```

## Evaluation


- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/bart-large-subjqa-grocery-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.grocery.json) 

|            |   Score | Type    | Dataset                                                          |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
| BERTScore  |   94.1  | grocery | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) |
| Bleu_1     |   23.2  | grocery | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) |
| Bleu_2     |   15.22 | grocery | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) |
| Bleu_3     |    4.85 | grocery | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) |
| Bleu_4     |    1.93 | grocery | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) |
| METEOR     |   20.42 | grocery | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) |
| MoverScore |   65.79 | grocery | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) |
| ROUGE_L    |   24.28 | grocery | [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) |



## Training hyperparameters

The following hyperparameters were used during fine-tuning:
 - dataset_path: lmqg/qg_subjqa
 - dataset_name: grocery
 - input_types: ['paragraph_answer']
 - output_types: ['question']
 - prefix_types: None
 - model: lmqg/bart-large-squad
 - max_length: 512
 - max_length_output: 32
 - epoch: 4
 - batch: 8
 - lr: 5e-05
 - fp16: False
 - random_seed: 1
 - gradient_accumulation_steps: 32
 - label_smoothing: 0.15

The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/bart-large-subjqa-grocery-qg/raw/main/trainer_config.json).

## Citation
```
@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

```