--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.85 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7011 - Accuracy: 0.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1633 | 1.0 | 113 | 2.0443 | 0.48 | | 1.5137 | 2.0 | 226 | 1.4296 | 0.63 | | 1.2242 | 3.0 | 339 | 1.0546 | 0.72 | | 0.9275 | 4.0 | 452 | 0.9730 | 0.73 | | 0.6252 | 5.0 | 565 | 0.6862 | 0.84 | | 0.403 | 6.0 | 678 | 0.5890 | 0.8 | | 0.5256 | 7.0 | 791 | 0.5414 | 0.84 | | 0.124 | 8.0 | 904 | 0.5469 | 0.81 | | 0.1207 | 9.0 | 1017 | 0.5683 | 0.82 | | 0.0434 | 10.0 | 1130 | 0.6445 | 0.83 | | 0.0107 | 11.0 | 1243 | 0.7085 | 0.83 | | 0.134 | 12.0 | 1356 | 0.6363 | 0.85 | | 0.0056 | 13.0 | 1469 | 0.6332 | 0.85 | | 0.0045 | 14.0 | 1582 | 0.6881 | 0.85 | | 0.004 | 15.0 | 1695 | 0.6204 | 0.86 | | 0.0033 | 16.0 | 1808 | 0.7015 | 0.84 | | 0.046 | 17.0 | 1921 | 0.6880 | 0.85 | | 0.0028 | 18.0 | 2034 | 0.6841 | 0.84 | | 0.0027 | 19.0 | 2147 | 0.6894 | 0.85 | | 0.0028 | 20.0 | 2260 | 0.7011 | 0.85 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.0 - Datasets 2.13.1 - Tokenizers 0.13.3