--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: openrail++ tags: - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers instance_prompt: a photo of home widget: [] --- # SDXL LoRA DreamBooth - reemas-irasna/home-decor_LoRA ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6638c2a3d5d215405e213a9b/6wr1qyRtCcdeMTVNqJghx.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6638c2a3d5d215405e213a9b/4xhhIJaZAFvmyls9Jb9wv.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6638c2a3d5d215405e213a9b/vY7jxRK7YbRaenJhHN4bs.png) ## Model description These are reemas-irasna/home-decor_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use "a photo of home" to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](reemas-irasna/home-decor_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python import torch from diffusers import DiffusionPipeline, AutoencoderKL vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipe.load_lora_weights("reemas-irasna/home-decor_LoRA") _ = pipe.to("cuda") prompt = "a photo of bedroom in red and white combination" image = pipe(prompt=prompt, num_inference_steps=25).images[0] image ```